SOME ABELIAN THEOREMS FOR DISTRIBUTIONAL HANKEL-CLIFFORD TRANSFORMATION

By

Jay Ram Mahto
Department of Mathematics,
P.P.K. College, Bundu (Ranchi), Bihar

and

Anil Kumar Mahato
Department of Mathematics,
Marwari College, Ranchi-834001, India

(Received: April 26, 1993)

ABSTRACT

In this paper an extension of the Hankel-Clifford transformation

\[F(s) = s^\mu \int_0^\infty (st)^{-\mu/2} J_\mu(2\sqrt{st}) f(t) \, dt \]

... (1.1)

to generalized functions is provided. Some Abelian theorem for the distributional Hankel-Clifford transform are proved.

1. INTRODUCTION: The integral transform

\[F(s) = s^\mu \int_0^\infty (st)^{-\mu/2} J_\mu(2\sqrt{st}) f(t) \, dt \] ... (1.1)

where \(J_\mu \) is the bessel function of the first kind of order \(\mu \), was studied by Betancor [1]. (1.1) is called as Hankel-Clifford transform.

In this paper, we shall relate the behaviour of generating function \(F(s) \) as \(s \) approaches zero or infinity to the behaviour of determining function \(f(t) \) as \(t \) approaches zero or infinity, respectively. Theorems of this nature are called Abelian theorems. In section 2, we construct a testing function space and its dual for Hankel-Clifford transform. We prove initial and final value theorems in section 3 and 4 respectively.

NOTATIONS AND TERMINOLOGY The notations and terminology of this work will follow that of [4] and [10]. Let \(I \) denotes the interval \((0, \infty)\). \(D(I) \) is the space of infinitely smooth functions defined
over I whose supports are compact subset of I. $D'(I)$ is Schwartz's dual space of distributions on I. $E(I)$ is the space of smooth functions on I, and $E'(I)$, the dual space of distributions having compact supports with respect to I. We assign to all these spaces their customary topologies [6, pp. 88-90].

2. THE TESTING FUNCTIONS SPACE $H_{c,d}$ AND ITS DUAL $H_{c,d} '$

We define the differential operator

$$S_{\mu, \phi(t)} = D t^{-\mu + 1} D t^{-\mu} \phi(t) : D = \frac{d}{dt} \quad \ldots (2.1)$$

Let us define the seminorms $\delta_{c,d,k}; k = 0, 1, 2, \ldots$, on a smooth function $\phi(t)$ defined on $0 < t < \infty$, by

$$\delta_{c,d,k} (\phi) = \sup_{0 < t < \infty} |\lambda_{c,d} (t) t^{\mu/2} \delta_{\mu, t} \phi(t)|,$$

where μ is a complex number with $\Re \mu > 0$ and

$$\lambda_{c,d} (t) = \begin{cases} t^c, & 1 \leq t < \infty \\ t^d, & 0 < t < 1. \end{cases}$$

$H_{c,d}$ is the space of smooth functions $\phi(t)$ on $0 < t < \infty$ for which $\delta_{c,d,k} (\phi)$ is finite for all $k = 0, 1, 2, \ldots$.

$H_{c,d}$ is a complete countably multinormed space $H_{c,d} '$ denotes the dual of $H_{c,d}$. If $f \in H_{c,d}$ the Hankel-Clifford transform F of f is defined by

$$F(s) = \langle f(t), s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) > \quad \ldots (2.3)$$

for any complex s not lying on the negative real axis and $\Re \mu > 0$.

Theorem 2.1 The kernel $k(st) = s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st})$ is a member of $H_{c,d}$ if $\epsilon < \frac{1}{2}$ and $d > 0$.

Proof: $k(st)$ is a smooth function and is a member of $H_{c,d}$ if and only if

$$\sup_{0 < t < \infty} |\lambda_{c,d} (t) t^{\mu/2} \delta_{\mu, t} [K(st)]| < \infty.$$

From [10, p.154], we have

$$D_x x^\mu J_\mu (xy) = yx^\mu J_{\mu - 1} (xy)$$

$$D_x x^{-\mu} J_\mu (xy) = -yx^{-\mu} J_{\mu + 1} (xy)$$
Hence

$$\sup_{0 < t < \infty} |\lambda_{c,d} (t) t^{\mu/2} S_{\mu}^k [K(st)]|$$

$$= \sup_{0 < t < \infty} |\lambda_{c,d} (t) s^{\mu/2} + 2k J_{\mu} (2\sqrt{s t})|$$

We have $J_{\mu}(x) = O(x^\mu)$ as $x \to 0$ and $\sqrt{x} J_{\mu}(x) = O(1)$ as $x \to \infty$.

Thus for $0 < t \leq 1$,

$$\sup_{0 < t \leq 1} |\lambda_{c,d} (t) t^{\mu/2} S_{\mu}^k [k(st)]|$$

$$= \sup_{0 < t \leq 1} |t^d s^{\mu/2} + 2k J_{\mu} (2\sqrt{s t})|$$

which tends to zero as $t \to 0$, s fixed and $d > 0$.

For $|t| \to \infty$,

$$\sup_{1 < t < \infty} |\lambda_{c,d} (t) t^{\mu/2} S_{\mu}^k [K(st)]|$$

$$= \sup_{1 < t < \infty} |t^{c - 1/4} 2^{1/2} s^{\mu/2} + 2k - 1/4 (2\sqrt{s t})^{1/2} J_{\mu} (2\sqrt{s t})|$$

which is bounded for $|t| \to \infty$ if $c < 1/4$.

Thus $K(st) \in H_{c,d}$ for $c < 1/4$ and $d > 0$.

Theorem 2.2 If $f \in H_{c,d}$ and $F(s)$ is defined by (2.3), then

$$F^k(s) = \langle f(t), \frac{\partial}{\partial s^k} [s^\mu (st)^{-\mu/2} J_{\mu} (2\sqrt{s t})]\rangle \quad \ldots (2.5)$$

Proof: The right hand side of (2.3) has a sense as the application of $f(t) \in H_{c,d}$ since $K(st) \in H_{c,d}$. For a similar reason, (2.5) also has meaning. (2.5) can be proved by using Cauchy's integral formula. The proof is very similar to that followed in [10, Theorem 8.3.1] and is therefore omitted.

Theorem 2.3 If $F(s)$ is defined by (2.3)

$$F(s) = O(1), s \to \infty$$

$$F(s) = O(s^{-1}), s \to 0$$

Proof: Using boundedness property of a generalized function, we have

$$|F(s)| = |\langle f, \phi \rangle|$$

$$\leq C \max_{0 \leq k \leq r} \sup_{0 < t < \infty} |\lambda_{c,d} (t) t^{\mu/2} S_{\mu}^k \phi(t)|$$
for appropriate constants C and r.

Therefore

$$|F(s)| \leq C \max_{0 \leq k \leq r} \sup_{0 < t < \infty} |\lambda_{c,d}(t) t^{\mu/2} S_{\mu,t}^k [s^{\mu/2} J_{\mu}(2\sqrt{s}t)]|$$

$$\leq C \max_{0 \leq k \leq r} \sup_{0 < t < \infty} |\lambda_{c,d}(t) s^{\mu/2 + 2k} J_{\mu}(2\sqrt{s}t)|$$

Using the result (2.4), we have

$$|s F(s)| \rightarrow 0 \text{ as } s \rightarrow 0^+$$

$$|F(s)| \rightarrow 0 \text{ as } s \rightarrow \infty.$$

From this our theorem is proved. Theorem 2.3 can be easily generalized to the following:

Theorem 2.4 If $F(s)$ is defined by (2.3) then

$$|F^k(s)| = O(s^{-k-1}); \quad s \rightarrow 0^+$$

$$|F^k(s)| = O(s^{-k}); \quad s \rightarrow \infty.$$

3. AN INITIAL-VALUE THEOREM FOR HANKEL-CLIFFORD TRANSFORMATION

Theorem 3.1 Let

(i) $f(t) \rightarrow 0$ as $t \rightarrow \infty$

(ii) $f(t)/t^n$ is absolutely continuous on $0 \leq t < \infty$ where η is a real number and if there exists a complex number α such that

$$\lim_{t \rightarrow 0^+} \frac{f(t)}{t^n} = \alpha \quad \ldots (3.1)$$

then

$$\lim_{s \rightarrow 0} C s^{\eta + 1 - \mu} F(s) = \alpha$$

where $F(s)$ is given by (2.3) and $C = \frac{\Gamma(\mu - \eta + 1)}{\Gamma(\eta + 1)}$ provided $\eta + 1 > 0,$ $\mu > \eta - 1$ and $\eta > \frac{3}{4} - \frac{\mu}{2}$

Proof: By our hypothesis, $f(t) = O(t^n)$ as $t \rightarrow 0^+.$ Moreover, the transform (2.3) exists for every positive value of μ and $\eta.$

From [2, p.326], we have

$$\int_0^\infty x^{s-1} \sqrt{x} J_v(x) \, dx = \frac{2^{2-v} \Gamma(\nu/2 + 1/4)}{\Gamma(\nu/2 - s/2 + 3/4)}$$

By using this, we get
\[
\int_0^t t^n s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) \, dt = s^\mu - \eta - 1 \frac{\Gamma(\eta + 1)}{\Gamma(\mu - \eta + 1)} \quad \text{...}(3.2)
\]

Assuming that \(y > 0 \), we may write

\[
\begin{align*}
&\left| s^{\eta+1-\mu} F(s) - \frac{\alpha}{C} \right| \\
&= \left| s^{\eta+1-\mu} \int_0^\infty s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) f(t) \, dt - \frac{\alpha}{C} \right| \\
&= \left| s^{\eta+1-\mu} \left\{ \int_0^\infty s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) f(t) \, dt \\
&\quad - \alpha \int_0^\infty t^n s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) \, dt \right\} \right| \\
&= \left| s^{\eta+1-\mu} \int_0^\infty [f(t) - \alpha t^n] s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) \, dt \right| \\
&\leq \left| s^{\eta+1-\mu} \int_0^y [f(t) - \alpha t^n] s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) \, dt \right| \\
&\quad + \left| s^{\eta+1-\mu} \int_y^\infty [f(t) - \alpha t^n] s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) \, dt \right| \\
&= I_1 + I_2.
\end{align*}
\]

Now

\[
I_1 \leq s^{\eta+1-\mu} \sup_{0 < t \leq y} \left| \frac{f(t)}{t^n} - \alpha \right| \left| \int_0^\infty t^n s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st}) \, dt \right|
\]

\[
= s^{\eta+1-\mu} \sup_{0 < t \leq y} \left| \frac{f(t)}{t^n} - \alpha \right| \left| \frac{s^\mu - \eta - 1}{C} \right| \quad \text{by (3.2)}.
\]

We choose \(y \) so small that \(\left| \frac{f(t)}{t^n} - \alpha \right| < \frac{\varepsilon}{C} \) in \(0 \leq t \leq y \) for \(\varepsilon > 0 \).

Hence \(I_1 \to 0 \). \quad \text{...}(3.3)

Having fixed \(y \) in this way and using (2.4),

\[
I_2 \leq M s^{\eta+1-\mu/2-1/4} \int_y^\infty t^{\eta-\mu/2-1/4} \left| \frac{f(t)}{t^n} - \alpha \right| \, dt
\]

for some constant \(M \). Since \(f(t)/t^n \) is a bounded quantity in \(y \leq t < \infty \) for some constant \(M_1 \).

\[
I_2 \leq M_1 s^{\eta+3/4-\mu/2} \frac{\gamma^{\eta-\mu/2+3/4}}{\eta-\mu/2+3/4} \to 0 \quad \text{as} \ s \to 0. \quad \text{...}(3.4)
\]
From (3.2) and (3.3) the result follows.

To extend the preceding results to the space $H_{c,d}$ we require the notion of the value of the distribution at a point. This concept is introduced by Lojasiewicz [3].

Definition 3.1. Lojasiewicz [3]. Let T be a distribution defined in a neighbourhood of a point x_0. We say that T has a value C at x_0 i.e. $T(x_0) = C$ if the distributional limit $\lim_{\lambda \to 0^+} T(x_0 + \lambda x)$ exists in a neighbourhood of x_0 and if it is a constant function C.

Theorem 3.2 (distributional initial value Abelian theorem), if

(i) $f(t) \in H'_{c,d}$

(ii) $f(t)/t^n \to \alpha$ as $t \to 0$ in the sense of Logasiewicz, then

$$\lim_{s \to \infty} C s^{\eta + 1 - \mu} F(s) = \alpha,$$

where $F(s)$ and C are defined in Theorem 3.1, provided $\eta + 1 > 0$ and $\mu > r$

Proof: Let us consider

$$s^{\eta + 1 - \mu} F(s) - \frac{\alpha}{C} = s^{\eta + 1 - \mu} <f(t) - \alpha t^n, s^{\mu} (st)^{-\mu/2} J_{\mu} (2\sqrt{st})>, \quad s^{\eta + 1 - \mu} G(s)$$

where $G(s) = <f(t) - \alpha t^n, s^{\mu} (st)^{-\mu/2} J_{\mu} (2\sqrt{st})>$.

Now from the boundedness property of generalized functions, there exists a positive constant M and non-negative integer r such that

$$\left| \frac{G(s)}{s^{\eta + 1 - \mu}} \right| \leq M \max_{0 \leq k \leq r} \sup_{0 < t < \infty} \left| \delta_{c,d,k} \left[K(st) \right] \right|$$

for a suitably chosen constant M_1. Now from (2.2) and (2.4), we have

$$\left| s^{\eta + 1 - \mu} G(s) \right| \leq \sup_{0 < t < \infty} \left(M_2 t^{\mu/2} s^{\eta + 1 + 2k} + \sup_{1 \leq t < \infty} M_3 t^{1/4} s^{-\mu/2 + 2k + 3/4} \right)$$

$$= M_2 + M_3 s^{-\mu/2 + 2k + 3/4}$$

for some suitably chosen constants M_2, M_3 and M_4. Since

$$\eta - \mu > 0, s^{\eta + 1 - \mu} G(s) \to 0 \text{ as } s \to \infty.$$
This establishes the theorem.

4. FINAL VALUE THEOREM FOR HANKEL-CLIFFORD TRANSFORMATION

Theorem 4.1 Let \(f(t) \) be a measurable function on \(0 < t < \infty \) and if there exist a real \(\eta \) and a complex \(\alpha \) such that

\[
(i) \lim_{t \to \infty} \frac{f(t)}{t^\eta} = \alpha,
\]

and \((ii) f(t)/t^\eta \) is bounded on \(0 \leq t \leq y \) for all \(y > 0 \).

Then

\[
\lim_{s \to \infty} s^{\eta+1-\mu} C F(s) = \alpha,
\]

where \(F(s) \) and \(C \) are given as in **Theorem 3.1**; provided \(\eta + 1 > 0 \) and \(\mu > \eta - 1 \).

Proof: (4.1) indicates that \(f(t) \) is a function of slow growth and its Hankel-Clifford transform converges for \(s > 0 \). Proceeding as in the proof of **Theorem 3.1**, we have

\[
|s^{\eta+1-\mu} F(s) - \frac{\alpha}{C}| = |s^{\eta+1-\mu} \int_0^\infty s^{\mu} (st)^{-\mu/2} J_\mu (2\sqrt{s}t) f(t) \, dt - \alpha s^{\eta+1-\mu} \int_0^\infty s^{\mu} (st)^{-\mu/2} J_\mu (2\sqrt{s}t) \, dt| = |s^{\eta+1-\mu} \int_0^\infty s^{\mu} (st)^{-\mu/2} J_\mu (2\sqrt{s}t) [f(t) - \alpha t^\eta] \, dt| \leq \int_0^\infty |s^{\eta+1-\mu} s^{\mu} (st)^{-\mu/2} J_\mu (2st) [f(t) - \alpha t^\eta]| \, dt + \int_y^\infty |s^{\eta+1-\mu} s^{\mu} (st)^{-\mu/2} J_\mu (2st) [f(t) - \alpha t^\eta]| \, dt \]

\[= J_1 + J_2.\]

From condition \((i) \) of the theorem, we can find a small positive number \(\varepsilon \) such that for \(\eta \) large enough

\[
\sup_{y \leq t < \infty} |f(t)/t^\eta - \alpha| \leq \varepsilon C.
\]

Hence we have

\[
|J_2| \leq C \int_0^\infty s^{\eta+1-\mu} s^{\mu} (st)^{-\mu/2} J_\mu (2\sqrt{s}t) t^\eta \, dt = \varepsilon \quad \text{by \((3.2) \)}
\]

hence

\[
|J_2| \leq \varepsilon.
\]
Therefore \(|J_2| \to 0 \) as \(\epsilon \to 0 \).

Now having fixed \(y \) as above, we have

\[
|J_1| \leq \sup_{0 \leq t \leq y} |f(t)/t^n| |\int_0^y |s^{\eta + 1 - \mu} s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st})| |dt.
\]

Due to conditions (ii) and (2.4), we have

\[
|J_1| \to 0 \text{ as } s \to \infty \text{ since } \eta + 1 > 0 \text{ and } \mu - \eta + 1 > 0.
\]

This completes the proof.

In extending this theorem to distributions we shall need the following result (Zemanian [Section 3.3]).

If \(f \in E'(I) \) there exists a constant \(C \) and a non-negative integer \(r \) such that for every \(\phi \in D(I) \),

\[
|<f, \phi>| \leq C \sup_{0 < t < \infty} |D_r^t \phi(t)|
\]

where \(D_r = \frac{d}{dt}^r \).

Theorem 4.2 (distributional final value Abelian theorem). If

(i) \(f \in H_{c,d} \) and \(f \) can be decomposed into \(f = f_1 + f_2 \) where \(f_1 \) is an ordinary function and \(f_2 \in E'(I) \), \(f_1 \) satisfies the hypothesis of Theorem 4.1.

(ii) \(f(t)/t^n \to \alpha \) as \(t \to \infty \) in the sense of Lojasiewicz.

(iii) \(0 < \eta + 1 < \mu \);

(iv) \(F(s) \) is the distributional Hankel-Clifford transform of \(f \),

then

\[
\lim_{s \to \infty} s^{\eta + 1 - \mu} F(s) = \lim_{t \to \infty} \frac{f(t)}{t^n} C
\]

where \(C \) is defined in Theorem 3.1.

Proof: \(F(s) = F_1(s) + F_2(s) \) and

\(F_2(s) = <f_2(t), s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st})> \)

By theorem 2.2, is smooth function and is of slow growth as \(s \to \infty \). Let \(g(t) \in D(I) \) be identically equal to one on a neighbourhood of support of \(f_2 \).

From (4.2)

\[
|F_2(s)| = |<f_2(t), g(t)s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st})>|
\]

\[
\leq C_1 \sup_{0 < t < \infty} |D_r^t [g(t)s^\mu (st)^{-\mu/2} J_\mu (2\sqrt{st})]|
\]
\[= C_1 \sup_{0 < t < \infty} \sum_{v = 0}^{r} \left| D_r^{-v} g(t) \right| \left| D_l^v s^{\mu}(st)^{-\mu/2} J_{\mu} (2\sqrt{st}) \right|\]

\[= C_1 \sup_{0 < t < \infty} \sum_{v = 0}^{r} \left| D_r^{-v} g(t) \right| \left| (-1)^v s^{\mu + v} \right| \left| (st)^{-(\mu + v)/2} J_{\mu + v} (2\sqrt{st}) \right|\]

From (2.4) it is easy to see that

\[\left| (-1)^v s^{\mu + v} \right| \left| (st)^{-(\mu + v)/2} J_{\mu} (2\sqrt{st}) \right|\]

is bounded on \(0 < t < \infty\).

Hence for some constant \(C_2\),

\[\left| F_2(s) \right| \leq C_2\]

or

\[\left| s^{\eta + 1 - \mu} F_2(s) \right| \leq C_2 s^{\eta + 1 - \mu}\]

Under condition (iii),

\[\left| s^{\eta + 1 - \mu} F_2(s) \right| \to 0 \text{ as } s \to \infty.\]

Then

\[\lim_{s \to \infty} s^{\eta + 1 - \mu} F(s) = \lim_{s \to \infty} s^{\eta + 1 - \mu} F_1(s) + \lim_{s \to \infty} s^{\eta + 1 - \mu} F_2(s)\]

\[= \lim_{s \to \infty} s^{\eta + 1 - \mu} F_1(s).\]

Since \(f_1\) is an ordinary function which satisfies the hypothesis of Theorem 4.1 the required result follows.

REFERENCES

