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In this paper the author has obtained three expansion formulae for
generalized Méijer’s G—functions of two variables in series of circular func-
tions of two variables in series of circular- functions using known Fourier
series. Further. these results have been employed to deduce some finite
integrals and a recurrence relation involving generalized Meijer’s G —functions
in two variables.

1. INTRODUCTION =
Generalized Meijer's G—function of two variables

Recently, Agarwal [(2), p. 537] has_defined an extension of Meijer’s
G—function in two variables by means ‘of a double Mellin-Barnes contour

integral in the form ’ i
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where (a) denotes the sequence of A parameters a,, ag,...... »ap » 1. e. there

are A of the a parameters, B of the b parameters and so on,
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The Meijer’s G-function in two arguments that we discuss here is a
slight var. .. o/ he one defined by Agarwal [(2)]. We introduce the genera-
lized Meijer’s G-function of two variables as
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and fl’ f2, .......

f, are such that none of the poles of the integrand coincide,
and the paths of integration are indented, if necessary, in such a manner that

all the poles of I' [d;—¢], j=1,2,...,r, T [fi—7], k = 1, 2,......, t and

I'j—¢t-m,j=1, 2 , I, lic to the right and those ofr[c,+§],
J=1 2ee, @, Tlex4+7], k=1,2,

...... , sand I'[l—a+é4m],j=1,
...... » P, lie to the left of the imaginary axis

The integral (1.2) converges if

2 (p+I+q+r)> [A+B+C4D]

2 (p+i+s+t)> [A+B+E+F]
larg (x)1 < [p+1+q+r—}(A+B+CH+D)] =
larg (y)! <[p+?+s+ t—% (A+B+E4F)] =

The following results are required in the present investigation

Fourier series by Parashar [(11), p. 1084, (2.2)] and MacRobert
T(9), p- 79; (10), p. 143}
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() V7T (2 =22 2 T (24+}).

Some researchérs have made an attempt to unify and to extend deve~
Iopments of some speéial'funhtions into Fourier series. Carlson and Greiman
[(6) have given a cosine series for Gegenbauer’s function. . -MacRobert [(9)
and (10)] has given a cosine and a sine series for the E-functions. Roop
Narain [(12)] and Jain R. N. [(7)] have obtained Fourier series for Meijer’s.
G-functions. Parashar [(11)] and Anandani P. [(3)] have given Fourier series
for H-functions. Recently, Shah Manilal [(13), (14) and (15)] has estab-
lished :—(i) Some Fourier series for Generalized Hypergeometric Polynomials.
which include Fourier series for polynomials of Bedient, Hermite, Laguerre
and generalized Sister Celine [(16)], (ii) Some results on Fourier series for
H-functions and (iii) Fourier series for generalized Meijer functions.

The object of this paper is to establish tliree expansion formulas for
generalized Meijer’s G-functions of two variables in series of sine and cosine
functions. Some finite integrals and a recurrence. relation for Meijer’s
G-functions of two variables have been derived with the help of these
formulae. Certain known and interesting results are also obtained on specia-
lizing the parameters, as particular cases of these formulae.

2. Expansion F ormulae for Generalized Meijer’s G-functions :

We establish the folldWing thrcfc results :
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‘where o € § < 7 and valid under the ‘conditions stated in (1.2).
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valid for o € 8 < 7 and conditions referred to (1.2).
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where 0 < ¢ < 7 and valid under the given conditions (1.2).

Proof :

To establish (2.1), expressing the Meijer’s G- functlon on the left as
Mellin-Barnes type of integral (1.2), we obtain
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Now using (1.3) and (1.6), the expression reduces to
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On chainging the order of integration and summation, the above
expression takes the form
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which yields the expression on the right of (2.1) in view of (1.2).

Regarding the interchange of the order of integration and summation,
it is observed that :—(i) the double contour integral converges under the

conditions given in (1.2), (ii) the series

F@+i4n0 T 04e4m) 0 i
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uniformly convergent when o € § < 7 and (iii) Meijer’s G-function in two
variables is a continuous function of x and y for all values of x > x;, > 0- and
¥ = Yo = 0. Hence the order of integration and summation is easily justi-

fied due to Bromwich [(5), p. 500].
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Expansion formulae (2.2) and (2.3) are proved in an analogous  manner
by using (1.4) and (1.5).

3. Corollaries:

From (2.1), we have
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Now the integral (3.3) can be written
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Hence, on writing sin (27 +1) ¢ sin g in (3.2) in the form
d {cos27y8 —cos(274+2)4}

and applying (3.4), we obtain the recurrence relation
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which can be easily varified by comparing coefficients in case A=B=C=D
=E=F=o0 and using (1.7).
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4. Particular Cases :

x
We know that the function G ( ] is in a more generalized from
Ly
which not only yields the Meijer’s G-function or the product of two G-func-

tions, as its specialized cases, but it also includes most of the commonly used

' ]
functions in two argument e. g. Kampe de Feriet’s {(8)] double hypergeomet-
ric functions which in turn, lead to the Appell functions [(1)] F;, F,, Fy
and F, the Whittaker function of two variables,

In (2.2), (2.3), (3.2), (3.3) and (8.5), setting A=p, (=B, E=s, t=],
fy="0, and replacing A+C by A, B-+D by B, A+q by K together with the
appropriate changes in the parameters etc.,, and then making y-o, we can
obtain the well-known results on Fourier series and integrals for Meijer’s
G-functions due to Roop Narain [(12), p. 149, (1.1), (1.2) and p. 151, sec. 3}
and a recurrence relation [(11), p. 1085, (2.10)] : '

m-+-1, n41 1—r, ap 24r
(1) 2G ( x [ )
p+2, q+2 3/2, by, 1
m+41,n+1 l—r,a, 14r m+1,n4-1 | —T, ap, 24T
PN G I ELAWOM G I
p+2s q+2 1/2, bq’ l p+2, Q+2 }’ bq’ l i

If we make use of the relation [(4), p. 215] :

q, 1 1, ay,.eenee ,a | P , b
G (x ! 1 p) _E 1 a ;x)
p+1l,q |« S »by F: S > ap
where E (.) denotes Mac Robert’s E-function [(4), p. 203], the formulae can

be reduced to the Fourier series for E-functions [(9), p. 79, (1) and (2)] and a
recurrence relation associated with E-functions [(11), p. 1085, (2.11)].
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