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ABSTRACT 

We introduce the concept of iper-dual systems . Beginning from 
the iper-dual system [H*,S>, we construct the Hilbert triplet 
SCHCS', where S is a pre-Hilbert space dense in the (real or 
complex) Hilbert space Hand S' is a space of linear functionals on S 
wider that H. The couple [S' ,S> so obtained is an iperdual system • 
Once having introduced the order-bounded nets, we prove that 
if every weak-convergent net is order-bounded, then S= H. Finally w~ 
study four examples of special triplet SCHCS' 

O. INTRODUCTION 

In Section I we introduce the concept of iper-dual systems, as a 
class of couples of linear spaces placed between the class of dual 
systems [I], and the class of Hilbert spaces. 

We construct a space of linear functionals X' by means of the 
A A 

X-wcak Cauchy sequences so that XCXCX', where [ X, X:;;;:o. is a iper-

dual system . 

In Section 2 we consider the iper-dual system [ H*, S>, where S 
is a pre-Hilberc space, H is the Hilbert space completion of Sand 
JI* is the dual of H. We construct the triplet SCHCS' from 
[H*,S>, in such a way that [S', S> is an iper-dual system, too. The 
main result obtained in this section is that if every "'eak convergent 
net is order- bounded, then S ~~ H. 
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Finally in Section 3 we study four examples of triplet SCHCS', 
In the exemple 1, His a separable, complex Hilbert space with a fixed 
orthonormal basis {un}, S: =Sp ( {Un}) is the linear manifold spanned 
by {un} and S 1 is constructed as descripted in Section 1. In this context 
we show that S' is identifiable with eiv, the space of all complex 
saquences. 

In the example 2,H=L2 (Rn) and S is the space S(Rn) of functions of 
rapid decrease in Rn . In this case S' coincides with the space of 
temperated distributions . 

In the example 3,H=l2 and S={ {an} : c; I an12 (n+l)"'<=VnJEN}. 
n=I 

We show that S' = { {bn} : 3CER and 3mE N such that lb,.J ~ c (1 +n )"' 

\1-nEN}, who coincides with the dual of S with respect to the topology 

of conutably normed space that makes S isomorphic to S(R) . 

In the example 4, His the space of Hilbert- Schmidt operators on a 
separable Hilbert space Hand Sis the space of finite rank operators 
on H. If we denote with K(H) and B(H) the space of compact opera­
tors and the space of bounded operators on H resp ectivcly, we show 
that K(H) CS'C B(H). 

It is useful to observe that in all previous examples, S is not 
complete in the topology induced by inner product. Tbe fact that 
S is not complete is the necessary and sufficient condition in order 
that we obtain an actual enlargrnent S' of H*. 

t· IPER-DUAL SYSTEMS AND WEAK CAUCHY SEQUENCES 

A 

Let X, X be two linear spaces. We suppose that: 

A 

(lDS-1) Xis a linear manifold of X. 
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(IDS-2) There is a functional [,> :XxX _,.C such that 

(a) the restriction of[,> to XxX is an inner product 

on X denoted by <I> • 

II 

(b) [x, • > is a linear functional for every xEX 

(c) [.,x> is an antilinear functional for every XEX. 

(d) [x,x>=O \f.XEX=>x=O. 
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Set R=RU {+w} . We define the function (called infi-norm) 
A 

i! 11 ... : X---+R in the following manner : 

l/.rl/,=sup { ! [ x,y> I : yfX, /Ml= I} 

wl::ere, of course, fiy!/'= <YJY>. Then we have 

(N-1) 0 iff x=q 

<N-2) P.r!J,. = 'Ai !!F' .. v>.EC 

(N-J) ::.r+ :;:;:;; :.z .. + 

We remark that the generalized Schwartz inequality holds : 

A 

I [ x, x> I 'i(l/xl/r, /Ix// Vx•X, \fXEX. 

(of course, /j.11/-,=l/1// \fxEX). 

DEFINITION. 
A 

We say that [X,X>is aa iper-dual system if (IDS-1 ), 

(IDS-2) hold and moreover 

A 

(IDS-3) }{ C X, where Xis tbe Hilbert space completion of 
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X with respect to the inner prduct < 1 > . 

A 

Let [ X,X> be an iper-dual system. We say that a sequence 

A 

{xn} CX is X-weak Cauchy iff 3 lim [xn, y> V-yeX . 
n 

A 

We say{xn} is X-weak convergent to xeX if! lim [xn, y> = [x,y> v- yeX. 
n 

We see immediately that the criterion of weak convergence defined 
on Xis compatible with its linear structure [2] • 

Furthermore, we observe that there exist X-weak convergent sequences 
for which the corresponding sequences of infi-norms do not converge 
to the infi-norm of limit . 

A 

Let Lw ( X, X) denote the linear space of the X-weak Cauchy 

A 

sequences in X. Every X-weak Cauchy sequence {xn} defines a linear 

functional t: X->C by the !aw <t,x> : = lim [xn, x> v-:·<EX. 
n 

The set of all linear functionals generated by some X-weak Cauchy 
sequence is denoted by X'. In the same way, generalizing the notion 
of X-weak '.Cauchy sequence, we shall say that a sequeuce {tn} in 
X' is a X-weak Cauchy sequence if/ 3 lim < t11. x> ¥ xeX. 

" 
Any X-weak convergent sequence in X' is a X-weak Cauchy sequence 

too . Now let {t,,} be a X-weak Cauchy sequence in X', then we can 
define the linear fur.ctional l: X-'j>C as <f,x> =lim<tn,X> V-xcX 
and we write l= w - lim tn . " 

In general l is not an element of X since it 1s not assur-:-d that there 
,, 

exists a sequence {%11} in X which converges X-weak to l. In the 
next proposition we shall give a sufficieni condition ensuring that l-X:, 
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PROPOSITION t. Let {tn} be a X-weak Cauchy sequence in X'. 
(\ 

If any t,. is generated by a sequence{ij"> }1eN inX which is uniformly 

weak convergent to t n in the sense that for every nE N and every 

)'EX there exists an integer j= j (n) depending on n but not on y, 
such that 

l <t,,, y>-[x}7~> , Y>J~_.! Vy<X 
n 

rhen l=w-lim t,. is an element of X' . 

A 

PROOF. Considering ihe sequence {x;7~l } in X we get that it is a 

X-weak Cauchy sequence; indeed, from 

lf drl) ['(>n) >1.,,..-1 t > ['(") >!+ 
xj(nJ , y> - xj(rn) , y """' < ·n, y - xi<n) 'y 

; 1+1 f [ o(1n) l .<t,,,y!>- <lm,y> <ai,y>- Xj(m)•Y> 

it follows that 3 lim [ x~::!> , y> VyEX. 

On the other hand, the relation 

I <l, y>-[ x~7~) , y>/~l<l, y>-<1t~,Y>l+l<t,.,y>-[xj7~) 'y> I 

under our hypotheses gives the result /€.¥' . 

A 

On Lw ( X, X) we can introduce the following equivalence relation, 

called the X-weak equiconvergence relation, def med as follows : 

{xn'}'""'w {x11"} ijflim [xn',y>=lim [xn",y> VyEX. 
n n 
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' It is trivial to see that X' and Lw ( X, X )/"'ware linearly isomorphic. 
Sett=[ {x .. } ]"'w. We suppose that /I xn //, <M. If the sequence 
{y,,) ex is norm-convergent to zero, then 

O~i <t, Y1<> {=liml [.:0,,,y> !~sup l!xnl/,. f/y,,f/~Mflykll 
" fl 

so that lim <t,y,,> = 0. Thus t is sequentially continuous (and there-
1o 

fore continuous) with respect to the: topology on X induced by the 
inaer product . Hence there exists XoEX=X* such that t =x0 , where 
X* denotes the dual space of X with respect to the topology induced 
by the inner product . Therefore we have proved that : 

PROPOSITION 2. 
/I. /I. 

If we denote by L~, (X.X) the linear subspace of Lw (X, X) 

/I. 

of bounded sequences in infl-norm, then }( and L~" (X,X)f'"'"'w 

are linearly isomorphic. In particular, it follows that 

' flx//,,<=YXEX and /I.vi/,=+= V,v<X',,)' 

2. HILBERT TRIPLETS AND WEAK CONVERGENT NETS 

We shall construct now an iper-d ual system by means of an other 
iper-dual system. In this Section, we denote by Sa pre-Hilbert spa ·e 
with inner product < 1 > . ( S. T < 1 > (S)) denotes the locally convex 
topological vector spoce in which T < 1 > (S) is the topology induced 
by the inner product. S* denotes the dual space of ( S, T .e 1 > (S)) 

and H the Hilbert space completion of S. \Ve denote by D(S) the 
linear space antiisomorphic to S of all linear fu11ctionals <xi : S-+C, 
with xeS, defined by <xi: y__,, <x\y> YyeS. We recall that S=H 
iff D(S)=S*. [ H*,S> is an iper·dual system. We construct S' in the 
same manner as in the previous Section ; 
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S' = {t : S-">-C : 3{xn} ~ Lw (H*,S), t=w-lim <x"/} . 
71 

We have that S'=Lw(H*,S)/"'10 and we have obtained the triplet 

S<H=H*=S*C.S' 

(S',S> is an iper-dual system . 

REMARK 1. It is easy to prove that the Hilbert space H* is identifiable 

with L~ (D(S), SJ/"''" in which bounded S-weak Cauchy sequences 

from D(S) are involved. We shall remember that a standard procedure 

for constructing lhe completion H* of D(S) is based on strong Cauchy 
Eequences using the strong equiconverg;;nce relation 

{x,.') '"'-'3 {x,.''} iff lim /lx,.'-x,,· 'H=O. 
n 

The above quoted result could seem very surprising, since S-weak 

Cauchy sequences are "much more" than strong Cauchy sequences 
from D(S). However, it must be remarked that the S·weak equicon­

vergence relation is weaker than the strong equiconvergence relation, 

so that S-weak equiconvergenc-: classes are "larger" than strong 

equiconvergense classes . 

REMARK 2. If {x,.} is a sequence from H* which is norm-bounded, 

the!i the existence of the lim<xn1Y> \!YES implies the existence of tbe 
11 

/i:n <x,. l t > \f fE H. However, the conditions 
7l 

( i) {xn}'"'-'w {x,.'} 

(ii) 3 lim <x,.,t> \ftEH 
11 

(iii) /!Xrii/<M 
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do not imply either the norm boundedness of {x,,'} or the existence of 

the lim <xn!t> '\ltEH. 
71 

We can endow th0 space S* with the a(S~·. S)-topology generated 
by the basis of neighbourhoods of zero 

u (x1' ... 'x,,;c:)= {/ES*: J<l,XJ> l<e v j= I ' ... r n}' 

X1 , • , Xr.eS, eeR+ 

so in this way ( S*, a(S*,S)) is an Hausdorff locally convex space 
whose topological dual is S. We recall that cr( S* ,S) is the weakest 
topology for S* with respect to which all the element of S are conti­
nuous. Hence we have that a(S* ,S)~T < 1 ;;. (S*) . 

The most important properties of the Hilbert trip'et SCH=H*CS' 
in relation to the cor;·esponding iper-dual system ore sumarized in the 
following statements : 

(a) ( S, a( S, S' ) ) is a nuclear space ; 

(b) the canonical embedding i: (S,a(S,S'))-+(H,cr(H, H*)) is continuous; 

(c) H * is dense in (S ',cr(S' ,S)) • 

PROOF. (a) The topology cr(S, S') for Sis the projective topology 

with respect to the family { (C"', L"'): C"'=C, L"'S]. Since each 

C00 =C is nuclear, then the space {S, cr(S, S')) is nuclear too [3] , 

(c) We shall make the identification H:::::.H* . Let t€S' . Then 

t=w-limx,., {xn}ELw(H*,S). We shall define t,,: = w-lim <x<7'11 

11 " fl 

(kl 
where {x,.} is the sequence in L~ (H*,S) defined by {xi,x2 , , Xk, 

Xk,X1:, ... } • It results that <lk/.y>=<x•/Y> and so 

lim<tk,y> = <t,y> V-ye S. 
7, 

For sake of completeness we give now briefly some definitions 
and results useful in the sequel. 
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A partially ordered set I is said to be directed if, given a,~<'lthere 

exists yEf such that rJ..E"f and ~<Y . 

. A generalized sequence or a net in a topological space T is a 
mappiag f: l-+T, where I is a directed set. As in the case of sequences, 
we write f (rJ.)=Xrx and we represent the net by its image {xoc}. 

Given the net {x"'} in the topological vector space T, we say that 
X<'T is the limit of {x"'} (and we write x=lim Xrx) or that x"' converges 
to x if for any neighbourhood Ux of x there exists a0Ef such that 
X"'< Ux Va>ao. It is ·well known that a funCtionffrom a topological 
space S to a topological space Tis continuous iff for every convergent 

net {x"'} in S, with Xo: -> x, the net f (xo:) converges in T to f (x). 

A net {xo.:} in Sis said to be order-bounded if there exists auEf snch 
that {xo.: : rJ.>IXo} is norm-bounded • 

The main result of this sccjon is the following 

THEOREM. (a) S=H ~ Lw (H*,S) = L: (H*, S) 

(b) If every net er( S, D(S)) - convergent is order• 

bourded, then S=H. 

PROOF. (a) It is an obvious consequence of the Uniform Bounde­
dness Principle [ 4] . 

(b) It is sufficient to prove that D(S)=S*. Since the topological dual 
of (S, cr( S, D(S)) is D(S), it is sufficient to show that every /ES* is 

er( S, J(S) ) - conrinuous on S. For th is, let /ES* and let {xo.:} be a net 
er( S, D (SJ) - convergent to x. Since /ES*, there exists {y1<} C D(S) 
such tbat Ii L-yk II-+ 0 . T,1e1eLJre 

k-+oo 

1</, x<=<-x> /= !<l± yk, Xo.:-X> k )/ l-yk II (i/x"'// +/Ix)/ )+]<yd x"'-x>i. 
Since {x"'} is order-bounded, there exist an a 0 E/ and a real number 

M>O such that //X:xl/<M for every IX>IXo. So, c:>O, there exists koEN 
such that II Y1co-l JI <c:/2 ( M+//x//). Moreover, as {xo.:} is cr( S, D(S)) 
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- convergent to x, there exists r1.E/ such that i <Yko I x"'-x> l <e:/2 for 

every a>r1.. 
Let a1 >{ r1.o, ~}.Then for every r1.>r1.1 we have 

I <I, x"'-x>; ~IJ/-yko!l(llx"'ll + IJxlJ) +I <Ykolx"'-x> I< _, .,e: ..... (H +llxlJ) 

+ _e_ = e:, i.e. lim<l, x.,.>= <I, x>. 
2 

REMARK. The statment (b) has a converse when H is finite-din-en­
sional ( i.e. in a finite-dimensional Hilbert space every weakly 
convergent net is order-bounded ), but the author ignores whether 
this property characterizes any Hilbert space . 

3. EXAMPLES 

EXAMPLE 1. We denote by H a separable, infinite-dimensional 
complex Hilbert space, by {un} an orthonormal basis fixed in Hand 
by S=Sp ( {un} ) the linear manifold spanned by {u,.} . 

Let E,, : H-'>H be the projection on the finite-dimensional subspace 
Sk : = Sp (u1 , •.• , Ux ) : 

k 

Ekx: = ~ <uJ I x>ui VxEH. 
i=l 

1t is straightforward to verify that the functional < 1 > k : Sx S--'?C 
defined by 

k 

<xj Y>k: = <Ekx ! E1, Y> = l: <x [ Ui> <u1 \ Y> 
i=l 

is a degenerate inner-product on S. We shall denote Sk the space S 
endowed with the degenerate inner product < 1 > k • 
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k 1/2 
The function Pk : x-+pk(x): = ( ~ I <u; / x> 12 ) is a seminorm on S. 

i=l 

Of course for the family of seminorms F( {unf )= {P• : hN} holds 

Pk (x)~Pk+J (x) l.fkEN and l.fxES. In the previous Section we have 

endowed the pre-Hilbert space S with the weak topology a(S, D(S)), 

that is of the topology generated by the family of seminorms 

F(D(S) )= {qli: = /<x I .>I, kES}. 

We show now that in the present example we have that 

F( D(S)) is equivalent to the t-ota!/y ordered family of seminorms F( {un} ). 

" PROOF. For every q,,, XES, we can write x = .z.; a;U; and so for 
i=l 

every yES, 

n n 

q., (y) =I< .z.; a,u;/ y>I ~ 2; I a; i I <u; IY> .. 
i=l 1·~1 

" " If A=max(Jc.:,1) 1 we have thatq,,(y)~A .Z.:l<u;!y>1<A.z.;p;(y). 
i=l ;=l 

k k 

Moreover, (pk(x))2= "Z; I <ui Ix> IJ < ( Z I <u; I x>I )2 
i=l i=l 

k n 

= ( l; q (x) )2 => p., (x)< .z.; q . (x). 
i·~l ltj i=l u, 

Finally, we ccnstruct S'. We recall that 

S'={ t: S-+C: 3 {xn}E Lw (H*, S) such that 

<t, y> = lim <xn 1 y> Vy.:S} • 
" 

Since S=Sp ( { U11} ), we have that 
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r, 

Let !ES'. If ai=<tl u;_> V-jENandy<S, Y= ~ :\;u;, then 
i=l 

r 

<t,y> =~';\;a;, 
i=l 

00 

The ( *)1 suggest to put, formally; t= ~ aJUj • so we can identify t 
j~l 

with the sequence {('J..;} • 

00 

The map cp: S'~CN, defined for every t = ~ rl.jUj in S' by cp(l)= {uj} 
j=l 

is a linear ·isomorphism between S' and CN. 

In fact it is easy to verify thaL cp is linear and injective. If {ix!} cCN 

n 

we consider th® sequence {x,,} CS defined by Xn= L; o 1u! • It is easy 
i=l 

to see that {xn} E Lw (H*, S) and if t=w-lim x,,, then rp (t) = {a!}, thus rp 
is surjective . " 

EXAMPLE 2. If His the Hilbert space L 2 (Rn) of square Lebesgue­
integrable complex-valued functions on Rn and Sis the space T (R 1

') 

dense in L 2 (Rn) of the functious of rapid decrease on Rn , then S is 
the space of temperated distributions T (R") according to the definition 
in [Sl . We have so obtained the iper-dual system [ T (R"), T (R")> 
and the Hilbert triplet T (R")CL2 (Rn;CT'(Rn). 

EXAMPLE3. Let H= 12 and S = T, where 

T= { {a11}d2: ~I an 12 (nt l)"'<=V-mEN} 

We show that S' coincides with the pual of T endowed with a suitable 
topology • If, mEN is fi:xed, we define the norm 11 llm with 

II~ )Jin : = ( L i an J2 ( n+ 1 )1 /2 V- ~ = {a,,} ET . 



( 21 

The family of norms ( II /Im )meN is a directed family of norms, that i, 

Vk1 , ... , krcN, 3 kcN and 3 ccR+ such that a //kt + . + a//" - - ' 

< c II a 1/1, VaET since, put k =max ( k 1 , •• , kr) , we have 

I/ a I/kl + ... + I/ a l/1<r < r I/ a l/k • - -
We consider now the countably normed space ( T, II /Im) • ft is 

well known that a sequence ( a<n> )nsN in ( T, I/ /Im ) converges to zero 

iff Um II a<n> /Im =0 VmE N. It is also easy to prove that ( T, I/ /Im ) is a 
" -

complete countably normed space . 

The proof of following lemmas 1 and 2 are in [6J : 

LEMMA I. A linear functional t : { T, /I /Im ) ....,.. C is continuous iff 
3cER+ and 3kEN such that 

I t (~)I < c II~ l/k V'!_ET. 

LEMMA 2. (UNIFORM BOUNDEDNESS PRINCJPL IN COU­
NTABLY NORMED SPACES). Let X be a complete countabl 
normed space with I/ /Ir a dire;ted sequence of norms Let F ,,e • ' 

in X*, the dual of X • If { F ( ( f) : FEF} is bounded for each f X 
then there is a CER+ and an rEN so that, for all /EX and all F· F, 

/ F (j) I < C fj t /Ir . 

Utilizing the Lemmas I ancl 2 it is now easy to prove the 

LEMMA 3. Let ( x<n> C/2 be a sequence in 12 such that 3 lim <x<n 
- n -

\a> Va ET . Then, if t= w-lim <x<nl 1 , we have that /E ( T, II ml/)' , 
- - n -

where ( T, /I /Im)' is the topological dual of the countably normed 
space ( T, I/ /Im ) • 

LEMMA 4. Let ( e(nl ) be the canonical basis in /2 ( e<"l = { 3k,. } l•eN ). - -
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Let TE ( T, /11/m ) ' , bn = T ( e(nl ) • Then there is is a ceR and a 

k·N so that I b,. I<; c ( l+n )"'and 

00 

( * )3 Ta = ~ an b,. V aeT , 
n=l -

Conversely, if U bn Ii <; c ( 1 +n )"', then ( * )3 defines an element 

of (T , II !Im )' • 

PROOF. IfT e ( T, 11113 )', then from lemma 1 follows i bn I <; c 
( I+ n )"" and moreover the ( * )3 is trivial, Conversely, if I b,. I ~ c 
( 1 +n )"'then 

I ~ar.bn 12 <; (~I an \2 ( n + 1 )2m+2) ( z; I bn 12 ( n+ I )-t2m 2> ) 

<; 1 I 6 c2rc2 JLa 11~111 + 2 
and so, still from lemma 1, the ( * )3 defines an el<;;ment of (T, II JI,,,)' 

THEOREM. In the previous notations, we have S'=( T, II /Im)', 

PROOF. S' C ( T, !I JI,,,)' is the Lemma 3. 

Conversely, if T E ( T, II llm )', then from Lemma 4, if b,. = T ( e(n• ) , 

itresultsjb,,\ <;c( l+n)"' and T(a)=l:a,.b,.. But then, put 

x(11>= ( b1 , •.• , bn, 0, 0, ... ) we have that vae T, 3 lim <x111 > I a> 
n 

= k b,. a,. = T ( a ) 

We have thus obtained the iper-dual system [ ( T, /I /Im)', T> 
and the Hilbert triplet { {an} : k, Gr. i2 (n+ l)n<oo Vm} 

C {{an} ;z;(an/2 <=}C {{an} :3ceR,_,3meN,lanl<cC1+n)"'}. 
REMARK. If ( T ( R ), /I /lu,h ) denotes the countably normed space 
of functions of rapid decrease on R with /11/k,h defined by /i<Dl/k,h : = 
jj xk <I>thl (x) 11 where I/ <l> II 00 : = sup I <l>( x) 1, it is well known that 

00
' xeR 
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the countably normed space ( T (R) , /I l/1,,1i ) and ( T, rl l/m ) are isom­

orphic ( [6]). This provide, "en passant", a proof of equivalence of 

definitions of tempered distributions via <linear functionals ( [ f] ) and 

via weakly Cauchy sequences [5] • 

EXAMPLE 4. Let H be a separable Hilbert space , Let B (H) be the 

space of bounded operators on H. We are interested to the following 

linear varieties of B (H) : 

F (H) : = { finite rank operators } 

HS (H) : = { Hilbert-Schmidt operators } 

K (H) : = { compact operators} 

We recail that [ 8] : 

(I) FcF(H) iff the range R (F) of F i.s finite-dimensional . 

{2) KEK(H) iff 3{ vi}, {wi} orthonormal bases of Hand 3{µi}CR+ 
with µ 1";>µ1 "/,EN and lim µi~~o, so that 

(*)t 

I 

00 

Kx= l: µz <x I vi> W 1 V-X< H. 
t=l 

(3) Td!S (H) iff TEK(H) and the sequence {µ1} of (*)f is in /2 , 

(4) T (fl) CHS {H)C K(H)C B (H). 

{5) If T1, T2EHS (H) and {u1} is an orthonormal basis of H, the 
00 

mm:erical serie£ z; < T1 uz I T2 uz > is absolutely convergent and 
l=l 

the sum is independent from the orthonormal basis {u1} • 

('6) HS (H) can be endowed with the inner product <T1 I T2> : 
~<T1 Uz / T2 ui> where {ui} is any orthonormal basis in H. With 
respect to this inner prcduct, HS (H) is a separable Hilbert space, 
which we denote by H. 
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(7) If we denote with S the space F(H), it results that S is dense in H. 

So we can construct S' as in Section 2 • 

On the contrary of example 1 in which beginning from the space S 
of finite sequences we have obtained that S is the space of all sequen­
ces, now, beginning from the space S of finite rank operators, we 

obtain thats' CB (H) and so it is not made up of al/ linear operators 
on H, as it results from the following theorem : 

THEOREM In the previous notations, we have K(H) C S' C B(H) . 

00 

PROOF. Let K € K(H). Then Kx = ~ µ,<xjvi>w,, Vx" H. We 
1 

can look to K as a functional on S defined by 

s ,.......,,,..,,.,,, s r- ,.._ 

K(F):= =l: /..1<Kv1/w1>VFES,Fx=~ .\i<xl vi>iv•. 
l=l !=l 

For each nEN we define Kn E H with 

fl 

K,. x = ~ µ1 < x I Vi> Wi ' 
1=1 

and we show that K=w lim<Kn I . 

s ,..._, 

Indeed if FES, Fx = ~ .\i<x l Vt >wi, 
l=l 

(*)~ 
• CC> ,.._ -~ ~ s f'J f'J 

<Kn\ F>= ~ <Kn Vi.IF V, >= ~ At< Kn Vt I Wi> 
!=l 1-1 

and so lim <Kn I F> = K(F). In this way we have proved thatK(H JCS'-
"' 

We show now that S'CB(H). Let t=w-lim<T"'EHS (H). From(*)~ 
fl 
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it is easy to.,see that 

(*)~ 3 lim < T,.x I y > \Ix, YE H 
" 

(in effect this is a necessary and sufficient condition in order that 
3 lim < T,, I F > \:/ FES ) • 

ti 

Of course the{*)~ is equivalent to 

(* Jt * :., !im < T,. x ! y > \IX, YEH ,. 

(we recall that TEHS(H) => T*EHS(H) . where T* denotes the adjoint 
of T). 

Now from (*)g , once fixed x, from the Uniform Boundedness Prine-

iple and from the Frcchet-Riesz theorem, it follows that 3!Txe H 
such that 

/im <T11 x \ y > = < T x I y> \:/YEH. 

" 
As x run over H, we obtain a map T: H-+ H which is linear, as it 
is easy to verif;. 

Analogously from(*)~ we obtain a linear mapping T satisfying 

-* 
,...., 

(*)4 lim <T,. x Jy> = < T x jy > \IX, YEH 
i ,. 

There remain to prove that TE B(H) . We recall that is sufficient to 
prove that T has an adjoint operator defined on H , \4] 

This is immediately verified once noted that the adjoint of T is the 

operator T sLce <Tx I y > =Zinz <Tn x I y> * lim <x) Tny > 
'll " 

< x IT Y > \IX, ye H. 
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