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ABSTRACT

We introduce the concept of iper-dual systems . Beginning from
the iper-dual system [H*,S>, we construct the Hilbert triplet
SCHCS’, where S is a pre-Hilbert space dense in the (realor
complex ) Hilbert space H and S’ is a space of linear functionals on S
wider that H. The couple [S",S> so obtained is an iperdual system .
Once having introduced the order-bounded nets, we prove that
if everv weak-convergent net is order~bounded, then S=H. Finally we
study four examples of special triplet SCHCS” .

¢. INTRODUCTION

In Section 1 we introduce the concept of iper-dual systems, as a
class of couples of lincar spaces placed between the class of dual
systems [1], and the class of Hilbert spaces .

We construct a space of linear functionals X' by means of the

A A .
X-weak Cauchy sequences so that XCXCX', where [X, X» is a iper-

dual sysiem .

In Section 2 we consider the iper-dual system [ H*, S>, where S
is a pre-Hilbert space, H is the Hilbert space completion of S and
H*is the dual of H. We construct the triplet SCHCS' from
[H*,S>,in such a way that [$’, 5> Is an iper-dual system, too. The
main result obtained in this section is that if every weak convergent
net is order-bounded, then S=H.
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Finally in Section 3 we study four examples of triplet SCHCS’,
In the exemple 1, H is a separable, complex Hilbert space with a fixed
orthonormal basis {un}, S:=Sp ({#s})is the linear manifold spanned
by {u.} and S’ is constructed as descripted in Section 1. In this context
we show that S’ is identifiable with C¥, the space of all complex
sequences .

In the example 2,H=L, (R®) and S is the space S(Rn) of funciions of
rapid decrease in R». In this case S’ coincides with the space of
temperated distributions .

In the example 3,H=1, and S={ {a2} : 2| anl? (n+l)45<ooVnzeN} .
n=1

We show that S ={ {bn} : dceR and Ime N such that [b < ¢ (1+n)m
wneN}, who coincides with the dual of S with respect to the topology

of conutably normed space that makes S isomorphic to S(R) .

In the example 4, H is the space of Hilbert- Schmidt operators ona
separable Hilbert space H and S is the space of finite rank operators
on H. If we denote with K(H) and B(H) the space of compact opera-
tors and the space of bounded operators on H resp ectively, we show
that K(H) CS'C B(H) .

It is useful to observe that in all previous cxamples, S is not
complete in the topology induced by inner product. The fact that
S is not complete is the necessary and sufficient condition in order
that we obtain an actual enlargment S’ of A*.

1+ IPER-DUAL SYSTEMS AND WEAK CAUCHY SEQUENCES

A
Let X, X be two linear spaces. We suppose that :

(IDS-1) X is a linear manifold of X .
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(IDS-2) There is a functional [,> :)?XX—>C guch that
(a) the restriction of [,> to XXX is an inner product
on X denoted by <1> .
A
(b) [# . > is a linear functional for every feX
(¢) [.,x> is an antilinear functional for every xeX .
(d) [#x>=0 ¥xeX=4=0 .
Set R=RU {+w} . We define the function (called infi-norm )
i )2%1? in the following manner :
lilli=sup { I [ £,y>1: yeX, |yi=1}
where, of course, |lyl’=<y|y>. Then we have
(N-1) [#l=0 iff #=0
(N-2) |23l = "X 120, ¥AeC
(N-3) 1443l < D2+

We remark that the generalized Schwartz inequality holds :

A
P& x> | <[l Xl WaeX , ¥xeX.
( of course, [lx|a=/[l\]| xeX ).
DEFINITION.

A

We say that [X, X>is an iper-dual system if (IDS-1),

(IZS-2) hold and moreover

(IDS-3) ¥ C X, where X is the Hilbert space completion of
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X with respect to the inner prduct <1> .

A
Let [X,X> be an iper-dual system. We say that a sequence

A
{#n} CX is X-weak Cauchy iff 3 lim [, y> VyeX .

A
We say {ia} is X-weak convergent to #eX iff lim [in, y> =[4,y> W yeX.

We see immediately that the criterion of weak convergence defined
on X is compatible with its linear structure [2].

Furthermore, we observe that there exist X-weak convergent sequences
for which the corresponding sequences of infi-norms do not converge
to the infi-norm of limit .

R A
Let Ly { X, X) denote the linear space of the X-weak Cauchy

A
sequences in X. Every X-weak (auchy sequence {i»} defines a linear

functional ¢ :X—C by the law <i,x> : = lim {£a, x> ¥ xeX .
n
The set of all lipear functionals generated by some X-weak Cauchy
sequence is denoted by X’ . In the same way, generalizing the notion
of X-weak 'Cauchy sequence, we shall say that a sequeuce {fs} in
X' is a X-weak Cauchy sequence iff 3 lim<t.. x> ¥xeX .
n

Any X-weak convergent sequence in X' is a X-weak Cauchy sequence
too . Now let {f.} be a X-weak Cauchy sequence in X', then we can

define the linear furctional [:X—Cas <lx> =lim<ta,x> ¥xeX
and we write [=w ~ [imi tn . n

In general /is not an element of X since it is not assurcd that there
A
exists a sequence {#.} in X which converges X-weak to l. In the

next proposition we shall give a sufficient condition ensuring that /- X:,
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PROPOSITION 1. Let {ta} be a X-weak Cauchy sequence in X'.

A
If any ¢, is generated by a sequence{i}" }jeny in X which is uniformly

weak convergent to f, in the sense that for .every n<N and every

yeX there exists an integer j=j(#) depending on n but noton p,
such that

| <tw, y>-[20, ,y>1<~’l2 v yeX

then /=w-lim tx is an element of X' .

A
PROOF . Considering the sequence {x!}, } inX we get that itisa
X-weak Cauchy sequence; indeed, from

”/’13'(17)1) , Y>> - [ A y>l <t"” y=>- [ 3?7)3) ’y>]+

Hjm)
?<tn y Yo - <im, y>‘+‘<tm, y> - [x%,’,, s y>l

it follows that 3 lim [ 2']), , v> VyeX.

it

On the other hand, the relation

2

| <l y>-] &) y>l<]<ls y>- <ltfhy>l+‘<t“sy> [7(n) "y>|

Xitm) s

under our hypotheses gives the result /eX’ .

A
On L, (X, X ) we can introduce the following equivalence relation,

called the X-weak equiconvergence relation, defined as follows :

{n'} ~w {8a""} Uf lzm [ £y > =lim [4a",y> ¥yeX.
n
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. .
It is trivial to see that X' and Ly (X, X )/~w are linearly isomorphic.
Set t==[ {#n}]~w. We suppose that | 4. ],<M . T the sequence
{yx) C€X is norm-convergent to zero, then

0| <ty yu>[=lim] [a,y>[sup [[Anlls « Yl <Myl
n n
so that im<t,y:>=0. Thus ¢ is sequéntially continuous (and there-
&

fore continuous) with respect to the topology on X induced by the
inaer product. Hence there exists xqe X=X* such that r=xp, where
X* denotes thc dual space of X with respect to the topology induced
by the inner product . Therefore we have proved that 3

PRGPOSITION 2.

A

A
If we denote by L (X.X) the linear subspace of L. (X, X)

A
of bounded sequences in infi-norm, then X and L’ (X,X)/~uw

are linearly isomorphic. In pariicular, it follows that

lIxfli<ootxeX and |[#ll,=+oo M ieXN\ X
2. HILBERT TRIPLETS AND WEAK CONVERGENT NETS

We shall construct now an iper-dual system by means of an other
iper-Jual system . In this Section, we denote by Sa pre-Hilbertspa-e
with inner product <<1> . (S. T 41:(S)) denotes the locally convex
topological vector spoce in which 7 4, . (S) is the topology induced
by the inner product . S* denotes the dual space of (S, T, 1,(S))
and A the Hilbert space completion of S. We denote by D(S) the
linear space antiisomorphic to Sof all linear functionals <x|: S-+C,
with xeS, defined by <x|:y— <xjy> ¥yeS. We recall that S=g
iff D(Sy=S*. [ H*,S> is an iper-dualsystem . We construct 8’ in the
same manner as in the previous Section



S'={t:85->C: Axn}e Luw (H%S), t=w-lim ‘<’.X'71’} .

We have that S'=L.(H*,S)/~w and we have obtained the triplet
S<H=H*=S*CS"

{S',S> isan iper-dual system .

REMARK 1. It is easy to prove that the Hilbert space H* i; identifiable

with L2 (D(S), S)j~w in which bounded S-weak Cauchy sequences

from D{S) are involved. We shall remember that a standard procedure
for constructing ithe completion H* of D(S) is based on strong Cauchy
cequences using the strong equiconvergence relation

{xa’y ~a 030"} U lim lxa’=xa" =0 .
7

The above quoted result could seem very surprising, since S-weak

Cauchy sequences are ‘‘much more” -than strong Cauchy sequences
from D(S). However, it must be remarked that the S-weak equicon-
vergence relation is weaker than the strong equiconvergence relation,
so ithat S-weak equiconvergence classes are “larger’” than strong
equiconvergense classes .

REMARK 2. If {x.} is a sequence from H* which is norm-bounded,
the: the existence of the lim <xay> % yeS implies ihe existence of the

ki

lim <xa{t> Mte H. However, the conditions

7

( i ) {Xn}"’w {Xn'}

(il ) 3 lim < Xp 1> NteH
nw

(1) fxall<M
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do not imply either the norm boundedness of {x»’} or the existence of
the lim <xalt> NiteH.

n

We can endow the space S* with the o(S*, S)-topology generated
by the basis of neighbourhoods of zero

U(x1y +00, Xnie)={leS* 1 <l x> |<e M j=1, ..., n},

Xy, o ., XneS, €€R+

so in this way (S¥* o(S*,5)) is an Hausdorff locally convex space
whose topological dual is S. We recall that o( $%,5 ) is the weakest
topology for S* with respect to which all the element of S are conti-
nuous. Hence we have that o(S*,5)<T 41 - (S%) .

The most important properties of the Hilbert trip'et SCH=H*CS’
in relation to the corresponding iper-dual system ore sumarized in the
following statements :

(@) (S, o(S.S'))is a nuclear space ;
(b) the canonical embedding i : (8,6(S,5"))~(H,s(H, H*)) is continuous;
(¢) H* is dense in (S',6(5",5)).

PROOF. (a) The topology o(S, 8°) for Sis the projective topology
with respect to the family {(Ci, La): Ca=C, LS ]. Since each
C.=C is nuclear, then the space (S, o(S, ') ) is nuclear too [3] ,

(c) We shall make the identification H=H* . LetteS’ . Then
t=w-lim xa, {xa}ely (H*,S). We shall define 2, : = w-lim <xm|

n n

., . .
where {x, } is the sequence in Lf, (H*,S) defined by {xy,x5, , xu,
Xky Xk, --o } o ltresults that <l p>=<xlp>" and so

lim<try>=<ty>¥ye S.
4

For sake of completeness we give now briefly some definitions
and results useful in the sequel.
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A partially ordered set I is said to be directed if, given o,Bef there
exists yvel such that wey and p<y .

.A generalized sequence or a net in a topological space Tis a
mappiag f : I-T, where [ is a directed set. As in the case of sequences,
we write f (¢«)=x« and we represent the net by its image {x.}.

Given the net {x.} in the topological vecior space T, we say that
xeT is the limit of {x.} (and we write x=1[im x,) or that x, converges
to x if for any neighbourhood U, of x there exists agel such that
Xee Uz Ma2eg. Itis well known thata functionffrom a topological
space S to a topological space T is continuous iff for every convergent

net {x.} in S, with xo — x, the net f {x«) convergesin T to f(x).
A rnet {x.} in S issaid to be order-bounded if there exists ayel snch
that {x« : ¢ >ap} iS norm-bounded .

The main result of this seciion is the following
THECREM. (a) S=H = L, (H*S)= L, (H*, S)

(b) If every net o S, D(S)) - convergent is orders
bourded, then S=H.

PREOQOF. (a) Itisan obvious consequence of the Uniform Bounde-
dness Principle [ 4] . :

(b) Ttis sufficient to prove that D(S)=S%. Since the topological dual
of (S, o( S, D(S) ) is D(S), it is sufficient to show that every leS¥is
o( S, 2(8) ) - continuous on S. For this, let leS* and let {x«} bea net
o( S, D(5)) - convergent 10 x . Since [eS*, there exists {ye} C D(S)
such that [[L-yx || = 0 . Tueiefore :
k—oo

1<y Xomx > = | <Lk py Xamx > [ ] 1=y 1] (Ixal] 1)) Y <yl xamx >
Since {x«} is order-bounded, there exist an age/ and a real number
M=>0 such that |Xs[| <A for every a>ag. So, €0, there exists kge N
such that | yuo~! || <e/2 ( M+4|jx]| ) . Moreover, as {x.} is o( S, D(S))
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- convergent to x, there exists ael such that [ <yro | Xa=x>|<¢[2 for

every a_a .
Let a3 22 { o, ;c} . Then for every e >a, we have

<l x«—x>;'<lll-Y§oli(l!Xull+HXH)+|<ykolxu-x>\< —zm(HHIXH)

+ ,;.__ =g, bLe.lim<l, xa>=<l, x> .

REMARK. The statment (b) has a converse when H is finite-din'en-
sional (i.e.in a finite-dimensional Hilbert space every weakly
convergent net is order-bounded ), but the author ignores whether
this property characterizes any Hilbert space .

3. EXAMPLES

EXAMPLE 1. We denote by H a separable, infinite-dimensional
complex Hilbert space, by {#.] an orthonormal basis fixed in H and
by S=Sp( {ua} ) the linear manifold spanned by {u.} .

Let E; : H- H be the projection on the finite-dimensional subspace
Skti=Sp Uy, ..,us )

k
Ewx:= Z <u; [x>u; MxeH.
=1

It is straightforward to verify that the functional <1>x:SxS—>C
defined by

k
<x|y>ii =<Ex|Ey>=3 <x|u><u!|y>

i=1

is a degenerate inner-product on .S. We shall denote Si the space S
endowed with the degenerate inner product <1>s.
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. k 1/2 .
The function pr : x—>pe(x): =(Z |<u; | x>[2) " is aseminormon S.
je=1

Of course for the family of seminorms F({ua! )= {p::keN} holds
P ()< pry (x) Mkey and wxeS . In the previous Section we have
endowed the pre-Hilbert space S with the weak topology o(S, D(S) ),
that is of the topology gemerated by the family of seminorms
F(D(S) )={ge: = |<x|.>|,keS} .

We show now that in the present example we have that

F( D(S) )is equivalent to the totally ordered family of seminorms F({u.}).

7n

PROOF . Forevery ge, xeS, we can write x = Z ou; and so for
=1

every yesS,

n

qw ()’)=l<%‘ ol y>1 <

=1 7%

Ilt/:"

I as i | <ui[y>. .

If A=max (ja;}), we have that g. ()< 4 E |<ug ly>i<4 Ep, .
s k

Moreover, (pu(x)2=Z | <u; [x> 2 (2 | <ui | x>])2
J=1 j=1

= (24, ) =p < B g, (0.

Finally, we ccnstruct S . We recall that
S'={1t:5+C:3 {xn}e Lo (H*, §) such that
<t y> = lim <xn|y> WyeS}.
n

Sines S=38p ( {us} ), we have that
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Let teS' . 1 ay=<tl u;> % jeN and yeS, y= % i, then
i=1

r
<t,y> = X Aidi.
=1

o

The (*)! suggest to put, formally, t=23 au;, so we can identify ¢
=1

with the sequence {a;} .

The map ¢ : S'—>CV , defined for everyt = L aju; in S’ by ¢(1)= {us}
: g=1
is a linear isomorphism between S’ and CN .

In fact it iseasy to verify that ¢ is linear and injective . If {a;} «CV

n
we consider the sequence {x,} CS defined by xpn= Z ocsu;. Itis easy
=1

to see that {x.}e Lw (H*, S) and if t=w- sz Xu, then ¢ (£)=1{as}, thus ¢
is surjective .

EXAMPLE 2. If H is the Hilbert space Lg (R") of square Lebesgue~
integrable complex-valued functions on R*and Sis the space T (R%)
dense in Ly (R") of the functious of rapid decrease on R», then S is
the space of temperated distributions T (R*) according to the definition
in [5] . We have so obiained the iper-dual system [T (R"), T (R%)>
and the Hilbert triplet T (R C Ly (RHC T (R?) . .

EXAMPLE3. Let g=I, and S=T, where

T=1{ {an}el : Z|an|? (n+ )" <ocoymeN} .

We show that S’ coincides with the pual of T endowed with a suitable
topology . If. m&N is fixed, we define the norm | || with

Halmt = (2@ (ntl )2y a={a)eT.
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The family of norms ( || [lm Jmen is a directed family of norms, that i,
Nk, coo ykreNy, 3 ke N and J ceR, such that aj +. + al

< cllalsaeT since, put k =max (ki, ..,k ), we have

H_f_lHkl + ot lale < rllal.

We consider now the countably normed space (T, |l=). Itis
well known that a sequence (a" )uen in (T, || [lm ) converges to zero
iff lim || @ ||n=0 ¥meN . Tt is also easy to prove that (T, || = )isa

complete countably normed space .
The proof of foilowing lemmas 1 and 2 are in [6] :

LEMMA 1. A linear funciional ¢: (T, ] = ) ~ C is continuous iff
JeeR, and Jke N such that

{t(_a)) < CHfl”k VCFT.

LEMMA 2. (UNIFORM BOUNDEDNESS PRINCIPL IN COU-
NTABLY NORMED SPACES ). Let X be a complete countab!
normed space with || [ a dire:ted sequence of norms Let F e 4 5

in X*, the dual of X .If{ F((f): FeF} is bounded for each [/ X
then there is aceR,. and an reN so that, for all feX and all £ F,

LE(f)f<cltlr.
Utilizing the Lemmas [ and 2 it is now easy to prove the
LEMMA 3. Let( x» Cly be a sequence in [ such that 3 lim <xmp
\£1> v_aeT . Then, if t= w—l:;m <3c‘"’ 1, we have that te (1"'1, el ),

where (T, || lm )" is the topological dual of the countably normed
space (T, || ) -

LEMMA 4. Let ( f‘”’ ) be the canonical basisin /g (€™ = { 8in }ren )-
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LetT e (T, |{lm) ,ba= T(e™ ), Then there is i3 a c<R and a

k<N sothat!lb.] < c(1+4n)ymand

(*P Ta= 2% abs ¥ aeT,

n=1
Conversely, if |ba|] < c(14n)m, then( *)3 definesan element
of (T, [[ll=) -

PROOF. IfT < (T, |P), then from lemma 1 follows [b,]| < ¢
(1+n y* and moreover the ( * )2 is trivial, Conversely, if 1 b, | ¢
( 14n )™ then

[ Saba 2 < (S| aa2(n+1)2m2) (1 bal2(ntl)yem )
<1162 |a B
and so, still from lemma 1, the ( * )3 defines an element of (T, i {|.)’
THEOREM. Inthe previous notations, we have S'={( T, [ |} )’,
PROOF. S"C (T, =) isthe Lemma 3.

Conversely, if T e (T, || |ln ), then from Lemma 4,if b,=T (e ),
itresults [bp\ < e(l4+n ) and T (fz ) =2 an bn. But then, put
x = (b, o..y bay 6,0, ...) we have that Mae T, 3 lim <x™ ja=>
- - n - -

=anan=T(£z)

We have thus obtained the iper-dual system [ (T, [|= )", T>
and the Hilbert triplet { {@.} : £, a2 (n+1)n<oo ¥ }
C {{an} :Z1an 2 <00} C {{an} s3ceRy, A3 meN,] aa | cl14n)m}.
REMARK. If (T(R), | llesn) denotes the countably mormed space
of functions of rapid decrease on R with || [lk,n defined by [[®llkn : =

|| %% @% (x) “00 where || @ [l o = sup | ©@(x)(, itis well known that
El Xe€



the countably normed space ( T(R), || [lr,» ) and (T, [|n ) are isom-
orphic ( [6] ). This provide, “en passant’, a proof of equivalence of
definitions of tempered distributions vialinear functionals ([f]) and

via weakly Cauchy sequences [5]

EXAMPLE 4. Let H be a separable Hilbert space , Let B (H) be the
space of bounded operators on H. We are interested to the following

linear varieties of B (H) :
F (H): = { finite rank operators }
HS (H) : { Hilbert-Schmidt operators }
K (H) : = { compact operators }

I

We recail that [ 8]
{1) FeF(H)iff the range R (F) of Fis finite-dimensional .

{2) KeK(H)iff 3{ v, }, {w)} orthonormal bases of H and 3{u}C R,
with p1>w ¥.eN and lim p=0, so that
1

oo

(*)% Ex= 2 pi<xlivw>w, wxe H,
=1

{3) Te<HS (H)iff T<K(H) and the sequence ’{,L&[} of (*)} isinly,
@) T (H)CHS (H)C KG)C B (H).
(5) M T,,TocfS(H) and {u} is an orlthonormal basis of H, the

oo
numerical series & <7, wi | Ty w,> 1s absolutely convergent and
1e=1

the sum is independent from the orthonormal basis {u} .

(6) HS (H)can be endowed with the inner product <Ty| To> : =
2<Tyu | Ty w> where {u} is any orthonormal basis in H. With
respect to this inner preduct, HS (H) is a separable Hilbert space,
which we denote by H.
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(7) 1If we denote with S the space F(H), it results that S is dense in H,
So we can construct S’ as in Section 2.

On the contrary of example 1 in which beginning from the space S
of finite sequences we have obtained that S is the space of all sequen-
ces, now, beginning from the space S of finite rank operators, we

obtain that §* CB (H) and so it is not made up of all linear operators
on H, as it results from the following theorem :

THEOREM In the previous notations, we have K(H) C S’ C B(H) .

oo

PROOF. LetKe<K(H). Then Kx = 2 p<xwu>w, vxe H. We
1

can look to K as a functionalon S defined by

S o~~~ s

K(F): = =32 u<Kwi|Wwi >¥FeS, Fx =32 h<x| > .
1=1 l=]
For each ne N we define K. € H with
KiX = 2 wm<x|vw>w,
=1

and we show that K=w lim<Kx. | .

Indeed if FES, Fx = 2 Ah<x| v >w,

ie=]

B
o0 ~ ~ ~ o~

")) <K|F>=3 <K vIFn>=32 N<Kuw|w>
= i=1

and so lim <Ka| F> = K(F). In this way we have proved thatK(H)CS"-

We show now that S'CB(H) . Let t=w-lim <TacHS (H) . From (*)}
Ton -
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it is easy to.see that
("5 3lm < Tux|y> ¥x,ye H
n

( in effect this is a necessary and sufficient condmon in order that
E{hm < Tul F> %FeS).

Of course the {*)} is equivalent to

#
(M lim<T, xly> wx, yeH

( we recall that TeHS(H) = T*<HS(H) . where T* denotes the adjoint
of T).

Now from (*)§ , once fixed x, from the Uniform Boundedness Princ-

iple and from the Fréchet-Riesz theorem, it follows that 3!1Txe¢ H
such that ' '

lim <Twxly>=<Tx|p> wyeH,
1
As x run over H , we obtain amap 7 : H — H which is linear, as it
is easy to verify .
Analogously from(*); we obtain a linear mapping T satisfying
~

i
() lim <Tax|y> = <Tx|y> ¥xy<H
5 n

There remain to prove that & B(H) . We recall that is sufficient to
prove that T has an adjoint operator defined on H, |4] .

This is immediately verified once noted that the adjoint of T is the

L]
operator T siace <Tx |y > =Ilm <Tax|y> = lim <x\1Tny >
k) n .

= <x|Ty> ¥x,yeH.
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