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ABSTRACT 

We introduce the concept of iper-dual systems . Beginning from 
the iper-dual system [H*,S>, we construct the Hilbert triplet 
SCHCS', where S is a pre-Hilbert space dense in the (real or 
complex) Hilbert space Hand S' is a space of linear functionals on S 
wider that H. The couple [S' ,S> so obtained is an iperdual system • 
Once having introduced the order-bounded nets, we prove that 
if every weak-convergent net is order-bounded, then S= H. Finally w~ 
study four examples of special triplet SCHCS' 

O. INTRODUCTION 

In Section I we introduce the concept of iper-dual systems, as a 
class of couples of linear spaces placed between the class of dual 
systems [I], and the class of Hilbert spaces. 

We construct a space of linear functionals X' by means of the 
A A 

X-wcak Cauchy sequences so that XCXCX', where [ X, X:;;;:o. is a iper-

dual system . 

In Section 2 we consider the iper-dual system [ H*, S>, where S 
is a pre-Hilberc space, H is the Hilbert space completion of Sand 
JI* is the dual of H. We construct the triplet SCHCS' from 
[H*,S>, in such a way that [S', S> is an iper-dual system, too. The 
main result obtained in this section is that if every "'eak convergent 
net is order- bounded, then S ~~ H. 
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Finally in Section 3 we study four examples of triplet SCHCS', 
In the exemple 1, His a separable, complex Hilbert space with a fixed 
orthonormal basis {un}, S: =Sp ( {Un}) is the linear manifold spanned 
by {un} and S 1 is constructed as descripted in Section 1. In this context 
we show that S' is identifiable with eiv, the space of all complex 
saquences. 

In the example 2,H=L2 (Rn) and S is the space S(Rn) of functions of 
rapid decrease in Rn . In this case S' coincides with the space of 
temperated distributions . 

In the example 3,H=l2 and S={ {an} : c; I an12 (n+l)"'<=VnJEN}. 
n=I 

We show that S' = { {bn} : 3CER and 3mE N such that lb,.J ~ c (1 +n )"' 

\1-nEN}, who coincides with the dual of S with respect to the topology 

of conutably normed space that makes S isomorphic to S(R) . 

In the example 4, His the space of Hilbert- Schmidt operators on a 
separable Hilbert space Hand Sis the space of finite rank operators 
on H. If we denote with K(H) and B(H) the space of compact opera
tors and the space of bounded operators on H resp ectivcly, we show 
that K(H) CS'C B(H). 

It is useful to observe that in all previous examples, S is not 
complete in the topology induced by inner product. Tbe fact that 
S is not complete is the necessary and sufficient condition in order 
that we obtain an actual enlargrnent S' of H*. 

t· IPER-DUAL SYSTEMS AND WEAK CAUCHY SEQUENCES 

A 

Let X, X be two linear spaces. We suppose that: 

A 

(lDS-1) Xis a linear manifold of X. 
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(IDS-2) There is a functional [,> :XxX _,.C such that 

(a) the restriction of[,> to XxX is an inner product 

on X denoted by <I> • 

II 

(b) [x, • > is a linear functional for every xEX 

(c) [.,x> is an antilinear functional for every XEX. 

(d) [x,x>=O \f.XEX=>x=O. 
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Set R=RU {+w} . We define the function (called infi-norm) 
A 

i! 11 ... : X---+R in the following manner : 

l/.rl/,=sup { ! [ x,y> I : yfX, /Ml= I} 

wl::ere, of course, fiy!/'= <YJY>. Then we have 

(N-1) 0 iff x=q 

<N-2) P.r!J,. = 'Ai !!F' .. v>.EC 

(N-J) ::.r+ :;:;:;; :.z .. + 

We remark that the generalized Schwartz inequality holds : 

A 

I [ x, x> I 'i(l/xl/r, /Ix// Vx•X, \fXEX. 

(of course, /j.11/-,=l/1// \fxEX). 

DEFINITION. 
A 

We say that [X,X>is aa iper-dual system if (IDS-1 ), 

(IDS-2) hold and moreover 

A 

(IDS-3) }{ C X, where Xis tbe Hilbert space completion of 
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X with respect to the inner prduct < 1 > . 

A 

Let [ X,X> be an iper-dual system. We say that a sequence 

A 

{xn} CX is X-weak Cauchy iff 3 lim [xn, y> V-yeX . 
n 

A 

We say{xn} is X-weak convergent to xeX if! lim [xn, y> = [x,y> v- yeX. 
n 

We see immediately that the criterion of weak convergence defined 
on Xis compatible with its linear structure [2] • 

Furthermore, we observe that there exist X-weak convergent sequences 
for which the corresponding sequences of infi-norms do not converge 
to the infi-norm of limit . 

A 

Let Lw ( X, X) denote the linear space of the X-weak Cauchy 

A 

sequences in X. Every X-weak Cauchy sequence {xn} defines a linear 

functional t: X->C by the !aw <t,x> : = lim [xn, x> v-:·<EX. 
n 

The set of all linear functionals generated by some X-weak Cauchy 
sequence is denoted by X'. In the same way, generalizing the notion 
of X-weak '.Cauchy sequence, we shall say that a sequeuce {tn} in 
X' is a X-weak Cauchy sequence if/ 3 lim < t11. x> ¥ xeX. 

" 
Any X-weak convergent sequence in X' is a X-weak Cauchy sequence 

too . Now let {t,,} be a X-weak Cauchy sequence in X', then we can 
define the linear fur.ctional l: X-'j>C as <f,x> =lim<tn,X> V-xcX 
and we write l= w - lim tn . " 

In general l is not an element of X since it 1s not assur-:-d that there 
,, 

exists a sequence {%11} in X which converges X-weak to l. In the 
next proposition we shall give a sufficieni condition ensuring that l-X:, 
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PROPOSITION t. Let {tn} be a X-weak Cauchy sequence in X'. 
(\ 

If any t,. is generated by a sequence{ij"> }1eN inX which is uniformly 

weak convergent to t n in the sense that for every nE N and every 

)'EX there exists an integer j= j (n) depending on n but not on y, 
such that 

l <t,,, y>-[x}7~> , Y>J~_.! Vy<X 
n 

rhen l=w-lim t,. is an element of X' . 

A 

PROOF. Considering ihe sequence {x;7~l } in X we get that it is a 

X-weak Cauchy sequence; indeed, from 

lf drl) ['(>n) >1.,,..-1 t > ['(") >!+ 
xj(nJ , y> - xj(rn) , y """' < ·n, y - xi<n) 'y 

; 1+1 f [ o(1n) l .<t,,,y!>- <lm,y> <ai,y>- Xj(m)•Y> 

it follows that 3 lim [ x~::!> , y> VyEX. 

On the other hand, the relation 

I <l, y>-[ x~7~) , y>/~l<l, y>-<1t~,Y>l+l<t,.,y>-[xj7~) 'y> I 

under our hypotheses gives the result /€.¥' . 

A 

On Lw ( X, X) we can introduce the following equivalence relation, 

called the X-weak equiconvergence relation, def med as follows : 

{xn'}'""'w {x11"} ijflim [xn',y>=lim [xn",y> VyEX. 
n n 
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' It is trivial to see that X' and Lw ( X, X )/"'ware linearly isomorphic. 
Sett=[ {x .. } ]"'w. We suppose that /I xn //, <M. If the sequence 
{y,,) ex is norm-convergent to zero, then 

O~i <t, Y1<> {=liml [.:0,,,y> !~sup l!xnl/,. f/y,,f/~Mflykll 
" fl 

so that lim <t,y,,> = 0. Thus t is sequentially continuous (and there-
1o 

fore continuous) with respect to the: topology on X induced by the 
inaer product . Hence there exists XoEX=X* such that t =x0 , where 
X* denotes the dual space of X with respect to the topology induced 
by the inner product . Therefore we have proved that : 

PROPOSITION 2. 
/I. /I. 

If we denote by L~, (X.X) the linear subspace of Lw (X, X) 

/I. 

of bounded sequences in infl-norm, then }( and L~" (X,X)f'"'"'w 

are linearly isomorphic. In particular, it follows that 

' flx//,,<=YXEX and /I.vi/,=+= V,v<X',,)' 

2. HILBERT TRIPLETS AND WEAK CONVERGENT NETS 

We shall construct now an iper-d ual system by means of an other 
iper-dual system. In this Section, we denote by Sa pre-Hilbert spa ·e 
with inner product < 1 > . ( S. T < 1 > (S)) denotes the locally convex 
topological vector spoce in which T < 1 > (S) is the topology induced 
by the inner product. S* denotes the dual space of ( S, T .e 1 > (S)) 

and H the Hilbert space completion of S. \Ve denote by D(S) the 
linear space antiisomorphic to S of all linear fu11ctionals <xi : S-+C, 
with xeS, defined by <xi: y__,, <x\y> YyeS. We recall that S=H 
iff D(S)=S*. [ H*,S> is an iper·dual system. We construct S' in the 
same manner as in the previous Section ; 



15 

S' = {t : S-">-C : 3{xn} ~ Lw (H*,S), t=w-lim <x"/} . 
71 

We have that S'=Lw(H*,S)/"'10 and we have obtained the triplet 

S<H=H*=S*C.S' 

(S',S> is an iper-dual system . 

REMARK 1. It is easy to prove that the Hilbert space H* is identifiable 

with L~ (D(S), SJ/"''" in which bounded S-weak Cauchy sequences 

from D(S) are involved. We shall remember that a standard procedure 

for constructing lhe completion H* of D(S) is based on strong Cauchy 
Eequences using the strong equiconverg;;nce relation 

{x,.') '"'-'3 {x,.''} iff lim /lx,.'-x,,· 'H=O. 
n 

The above quoted result could seem very surprising, since S-weak 

Cauchy sequences are "much more" than strong Cauchy sequences 
from D(S). However, it must be remarked that the S·weak equicon

vergence relation is weaker than the strong equiconvergence relation, 

so that S-weak equiconvergenc-: classes are "larger" than strong 

equiconvergense classes . 

REMARK 2. If {x,.} is a sequence from H* which is norm-bounded, 

the!i the existence of the lim<xn1Y> \!YES implies the existence of tbe 
11 

/i:n <x,. l t > \f fE H. However, the conditions 
7l 

( i) {xn}'"'-'w {x,.'} 

(ii) 3 lim <x,.,t> \ftEH 
11 

(iii) /!Xrii/<M 
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do not imply either the norm boundedness of {x,,'} or the existence of 

the lim <xn!t> '\ltEH. 
71 

We can endow th0 space S* with the a(S~·. S)-topology generated 
by the basis of neighbourhoods of zero 

u (x1' ... 'x,,;c:)= {/ES*: J<l,XJ> l<e v j= I ' ... r n}' 

X1 , • , Xr.eS, eeR+ 

so in this way ( S*, a(S*,S)) is an Hausdorff locally convex space 
whose topological dual is S. We recall that cr( S* ,S) is the weakest 
topology for S* with respect to which all the element of S are conti
nuous. Hence we have that a(S* ,S)~T < 1 ;;. (S*) . 

The most important properties of the Hilbert trip'et SCH=H*CS' 
in relation to the cor;·esponding iper-dual system ore sumarized in the 
following statements : 

(a) ( S, a( S, S' ) ) is a nuclear space ; 

(b) the canonical embedding i: (S,a(S,S'))-+(H,cr(H, H*)) is continuous; 

(c) H * is dense in (S ',cr(S' ,S)) • 

PROOF. (a) The topology cr(S, S') for Sis the projective topology 

with respect to the family { (C"', L"'): C"'=C, L"'S]. Since each 

C00 =C is nuclear, then the space {S, cr(S, S')) is nuclear too [3] , 

(c) We shall make the identification H:::::.H* . Let t€S' . Then 

t=w-limx,., {xn}ELw(H*,S). We shall define t,,: = w-lim <x<7'11 

11 " fl 

(kl 
where {x,.} is the sequence in L~ (H*,S) defined by {xi,x2 , , Xk, 

Xk,X1:, ... } • It results that <lk/.y>=<x•/Y> and so 

lim<tk,y> = <t,y> V-ye S. 
7, 

For sake of completeness we give now briefly some definitions 
and results useful in the sequel. 
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A partially ordered set I is said to be directed if, given a,~<'lthere 

exists yEf such that rJ..E"f and ~<Y . 

. A generalized sequence or a net in a topological space T is a 
mappiag f: l-+T, where I is a directed set. As in the case of sequences, 
we write f (rJ.)=Xrx and we represent the net by its image {xoc}. 

Given the net {x"'} in the topological vector space T, we say that 
X<'T is the limit of {x"'} (and we write x=lim Xrx) or that x"' converges 
to x if for any neighbourhood Ux of x there exists a0Ef such that 
X"'< Ux Va>ao. It is ·well known that a funCtionffrom a topological 
space S to a topological space Tis continuous iff for every convergent 

net {x"'} in S, with Xo: -> x, the net f (xo:) converges in T to f (x). 

A net {xo.:} in Sis said to be order-bounded if there exists auEf snch 
that {xo.: : rJ.>IXo} is norm-bounded • 

The main result of this sccjon is the following 

THEOREM. (a) S=H ~ Lw (H*,S) = L: (H*, S) 

(b) If every net er( S, D(S)) - convergent is order• 

bourded, then S=H. 

PROOF. (a) It is an obvious consequence of the Uniform Bounde
dness Principle [ 4] . 

(b) It is sufficient to prove that D(S)=S*. Since the topological dual 
of (S, cr( S, D(S)) is D(S), it is sufficient to show that every /ES* is 

er( S, J(S) ) - conrinuous on S. For th is, let /ES* and let {xo.:} be a net 
er( S, D (SJ) - convergent to x. Since /ES*, there exists {y1<} C D(S) 
such tbat Ii L-yk II-+ 0 . T,1e1eLJre 

k-+oo 

1</, x<=<-x> /= !<l± yk, Xo.:-X> k )/ l-yk II (i/x"'// +/Ix)/ )+]<yd x"'-x>i. 
Since {x"'} is order-bounded, there exist an a 0 E/ and a real number 

M>O such that //X:xl/<M for every IX>IXo. So, c:>O, there exists koEN 
such that II Y1co-l JI <c:/2 ( M+//x//). Moreover, as {xo.:} is cr( S, D(S)) 
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- convergent to x, there exists r1.E/ such that i <Yko I x"'-x> l <e:/2 for 

every a>r1.. 
Let a1 >{ r1.o, ~}.Then for every r1.>r1.1 we have 

I <I, x"'-x>; ~IJ/-yko!l(llx"'ll + IJxlJ) +I <Ykolx"'-x> I< _, .,e: ..... (H +llxlJ) 

+ _e_ = e:, i.e. lim<l, x.,.>= <I, x>. 
2 

REMARK. The statment (b) has a converse when H is finite-din-en
sional ( i.e. in a finite-dimensional Hilbert space every weakly 
convergent net is order-bounded ), but the author ignores whether 
this property characterizes any Hilbert space . 

3. EXAMPLES 

EXAMPLE 1. We denote by H a separable, infinite-dimensional 
complex Hilbert space, by {un} an orthonormal basis fixed in Hand 
by S=Sp ( {un} ) the linear manifold spanned by {u,.} . 

Let E,, : H-'>H be the projection on the finite-dimensional subspace 
Sk : = Sp (u1 , •.• , Ux ) : 

k 

Ekx: = ~ <uJ I x>ui VxEH. 
i=l 

1t is straightforward to verify that the functional < 1 > k : Sx S--'?C 
defined by 

k 

<xj Y>k: = <Ekx ! E1, Y> = l: <x [ Ui> <u1 \ Y> 
i=l 

is a degenerate inner-product on S. We shall denote Sk the space S 
endowed with the degenerate inner product < 1 > k • 
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k 1/2 
The function Pk : x-+pk(x): = ( ~ I <u; / x> 12 ) is a seminorm on S. 

i=l 

Of course for the family of seminorms F( {unf )= {P• : hN} holds 

Pk (x)~Pk+J (x) l.fkEN and l.fxES. In the previous Section we have 

endowed the pre-Hilbert space S with the weak topology a(S, D(S)), 

that is of the topology generated by the family of seminorms 

F(D(S) )= {qli: = /<x I .>I, kES}. 

We show now that in the present example we have that 

F( D(S)) is equivalent to the t-ota!/y ordered family of seminorms F( {un} ). 

" PROOF. For every q,,, XES, we can write x = .z.; a;U; and so for 
i=l 

every yES, 

n n 

q., (y) =I< .z.; a,u;/ y>I ~ 2; I a; i I <u; IY> .. 
i=l 1·~1 

" " If A=max(Jc.:,1) 1 we have thatq,,(y)~A .Z.:l<u;!y>1<A.z.;p;(y). 
i=l ;=l 

k k 

Moreover, (pk(x))2= "Z; I <ui Ix> IJ < ( Z I <u; I x>I )2 
i=l i=l 

k n 

= ( l; q (x) )2 => p., (x)< .z.; q . (x). 
i·~l ltj i=l u, 

Finally, we ccnstruct S'. We recall that 

S'={ t: S-+C: 3 {xn}E Lw (H*, S) such that 

<t, y> = lim <xn 1 y> Vy.:S} • 
" 

Since S=Sp ( { U11} ), we have that 
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r, 

Let !ES'. If ai=<tl u;_> V-jENandy<S, Y= ~ :\;u;, then 
i=l 

r 

<t,y> =~';\;a;, 
i=l 

00 

The ( *)1 suggest to put, formally; t= ~ aJUj • so we can identify t 
j~l 

with the sequence {('J..;} • 

00 

The map cp: S'~CN, defined for every t = ~ rl.jUj in S' by cp(l)= {uj} 
j=l 

is a linear ·isomorphism between S' and CN. 

In fact it is easy to verify thaL cp is linear and injective. If {ix!} cCN 

n 

we consider th® sequence {x,,} CS defined by Xn= L; o 1u! • It is easy 
i=l 

to see that {xn} E Lw (H*, S) and if t=w-lim x,,, then rp (t) = {a!}, thus rp 
is surjective . " 

EXAMPLE 2. If His the Hilbert space L 2 (Rn) of square Lebesgue
integrable complex-valued functions on Rn and Sis the space T (R 1

') 

dense in L 2 (Rn) of the functious of rapid decrease on Rn , then S is 
the space of temperated distributions T (R") according to the definition 
in [Sl . We have so obtained the iper-dual system [ T (R"), T (R")> 
and the Hilbert triplet T (R")CL2 (Rn;CT'(Rn). 

EXAMPLE3. Let H= 12 and S = T, where 

T= { {a11}d2: ~I an 12 (nt l)"'<=V-mEN} 

We show that S' coincides with the pual of T endowed with a suitable 
topology • If, mEN is fi:xed, we define the norm 11 llm with 

II~ )Jin : = ( L i an J2 ( n+ 1 )1 /2 V- ~ = {a,,} ET . 
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The family of norms ( II /Im )meN is a directed family of norms, that i, 

Vk1 , ... , krcN, 3 kcN and 3 ccR+ such that a //kt + . + a//" - - ' 

< c II a 1/1, VaET since, put k =max ( k 1 , •• , kr) , we have 

I/ a I/kl + ... + I/ a l/1<r < r I/ a l/k • - -
We consider now the countably normed space ( T, II /Im) • ft is 

well known that a sequence ( a<n> )nsN in ( T, I/ /Im ) converges to zero 

iff Um II a<n> /Im =0 VmE N. It is also easy to prove that ( T, I/ /Im ) is a 
" -

complete countably normed space . 

The proof of following lemmas 1 and 2 are in [6J : 

LEMMA I. A linear functional t : { T, /I /Im ) ....,.. C is continuous iff 
3cER+ and 3kEN such that 

I t (~)I < c II~ l/k V'!_ET. 

LEMMA 2. (UNIFORM BOUNDEDNESS PRINCJPL IN COU
NTABLY NORMED SPACES). Let X be a complete countabl 
normed space with I/ /Ir a dire;ted sequence of norms Let F ,,e • ' 

in X*, the dual of X • If { F ( ( f) : FEF} is bounded for each f X 
then there is a CER+ and an rEN so that, for all /EX and all F· F, 

/ F (j) I < C fj t /Ir . 

Utilizing the Lemmas I ancl 2 it is now easy to prove the 

LEMMA 3. Let ( x<n> C/2 be a sequence in 12 such that 3 lim <x<n 
- n -

\a> Va ET . Then, if t= w-lim <x<nl 1 , we have that /E ( T, II ml/)' , 
- - n -

where ( T, /I /Im)' is the topological dual of the countably normed 
space ( T, I/ /Im ) • 

LEMMA 4. Let ( e(nl ) be the canonical basis in /2 ( e<"l = { 3k,. } l•eN ). - -
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Let TE ( T, /11/m ) ' , bn = T ( e(nl ) • Then there is is a ceR and a 

k·N so that I b,. I<; c ( l+n )"'and 

00 

( * )3 Ta = ~ an b,. V aeT , 
n=l -

Conversely, if U bn Ii <; c ( 1 +n )"', then ( * )3 defines an element 

of (T , II !Im )' • 

PROOF. IfT e ( T, 11113 )', then from lemma 1 follows i bn I <; c 
( I+ n )"" and moreover the ( * )3 is trivial, Conversely, if I b,. I ~ c 
( 1 +n )"'then 

I ~ar.bn 12 <; (~I an \2 ( n + 1 )2m+2) ( z; I bn 12 ( n+ I )-t2m 2> ) 

<; 1 I 6 c2rc2 JLa 11~111 + 2 
and so, still from lemma 1, the ( * )3 defines an el<;;ment of (T, II JI,,,)' 

THEOREM. In the previous notations, we have S'=( T, II /Im)', 

PROOF. S' C ( T, !I JI,,,)' is the Lemma 3. 

Conversely, if T E ( T, II llm )', then from Lemma 4, if b,. = T ( e(n• ) , 

itresultsjb,,\ <;c( l+n)"' and T(a)=l:a,.b,.. But then, put 

x(11>= ( b1 , •.• , bn, 0, 0, ... ) we have that vae T, 3 lim <x111 > I a> 
n 

= k b,. a,. = T ( a ) 

We have thus obtained the iper-dual system [ ( T, /I /Im)', T> 
and the Hilbert triplet { {an} : k, Gr. i2 (n+ l)n<oo Vm} 

C {{an} ;z;(an/2 <=}C {{an} :3ceR,_,3meN,lanl<cC1+n)"'}. 
REMARK. If ( T ( R ), /I /lu,h ) denotes the countably normed space 
of functions of rapid decrease on R with /11/k,h defined by /i<Dl/k,h : = 
jj xk <I>thl (x) 11 where I/ <l> II 00 : = sup I <l>( x) 1, it is well known that 

00
' xeR 
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the countably normed space ( T (R) , /I l/1,,1i ) and ( T, rl l/m ) are isom

orphic ( [6]). This provide, "en passant", a proof of equivalence of 

definitions of tempered distributions via <linear functionals ( [ f] ) and 

via weakly Cauchy sequences [5] • 

EXAMPLE 4. Let H be a separable Hilbert space , Let B (H) be the 

space of bounded operators on H. We are interested to the following 

linear varieties of B (H) : 

F (H) : = { finite rank operators } 

HS (H) : = { Hilbert-Schmidt operators } 

K (H) : = { compact operators} 

We recail that [ 8] : 

(I) FcF(H) iff the range R (F) of F i.s finite-dimensional . 

{2) KEK(H) iff 3{ vi}, {wi} orthonormal bases of Hand 3{µi}CR+ 
with µ 1";>µ1 "/,EN and lim µi~~o, so that 

(*)t 

I 

00 

Kx= l: µz <x I vi> W 1 V-X< H. 
t=l 

(3) Td!S (H) iff TEK(H) and the sequence {µ1} of (*)f is in /2 , 

(4) T (fl) CHS {H)C K(H)C B (H). 

{5) If T1, T2EHS (H) and {u1} is an orthonormal basis of H, the 
00 

mm:erical serie£ z; < T1 uz I T2 uz > is absolutely convergent and 
l=l 

the sum is independent from the orthonormal basis {u1} • 

('6) HS (H) can be endowed with the inner product <T1 I T2> : 
~<T1 Uz / T2 ui> where {ui} is any orthonormal basis in H. With 
respect to this inner prcduct, HS (H) is a separable Hilbert space, 
which we denote by H. 
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(7) If we denote with S the space F(H), it results that S is dense in H. 

So we can construct S' as in Section 2 • 

On the contrary of example 1 in which beginning from the space S 
of finite sequences we have obtained that S is the space of all sequen
ces, now, beginning from the space S of finite rank operators, we 

obtain thats' CB (H) and so it is not made up of al/ linear operators 
on H, as it results from the following theorem : 

THEOREM In the previous notations, we have K(H) C S' C B(H) . 

00 

PROOF. Let K € K(H). Then Kx = ~ µ,<xjvi>w,, Vx" H. We 
1 

can look to K as a functional on S defined by 

s ,.......,,,..,,.,,, s r- ,.._ 

K(F):= =l: /..1<Kv1/w1>VFES,Fx=~ .\i<xl vi>iv•. 
l=l !=l 

For each nEN we define Kn E H with 

fl 

K,. x = ~ µ1 < x I Vi> Wi ' 
1=1 

and we show that K=w lim<Kn I . 

s ,..._, 

Indeed if FES, Fx = ~ .\i<x l Vt >wi, 
l=l 

(*)~ 
• CC> ,.._ -~ ~ s f'J f'J 

<Kn\ F>= ~ <Kn Vi.IF V, >= ~ At< Kn Vt I Wi> 
!=l 1-1 

and so lim <Kn I F> = K(F). In this way we have proved thatK(H JCS'-
"' 

We show now that S'CB(H). Let t=w-lim<T"'EHS (H). From(*)~ 
fl 
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it is easy to.,see that 

(*)~ 3 lim < T,.x I y > \Ix, YE H 
" 

(in effect this is a necessary and sufficient condition in order that 
3 lim < T,, I F > \:/ FES ) • 

ti 

Of course the{*)~ is equivalent to 

(* Jt * :., !im < T,. x ! y > \IX, YEH ,. 

(we recall that TEHS(H) => T*EHS(H) . where T* denotes the adjoint 
of T). 

Now from (*)g , once fixed x, from the Uniform Boundedness Prine-

iple and from the Frcchet-Riesz theorem, it follows that 3!Txe H 
such that 

/im <T11 x \ y > = < T x I y> \:/YEH. 

" 
As x run over H, we obtain a map T: H-+ H which is linear, as it 
is easy to verif;. 

Analogously from(*)~ we obtain a linear mapping T satisfying 

-* 
,...., 

(*)4 lim <T,. x Jy> = < T x jy > \IX, YEH 
i ,. 

There remain to prove that TE B(H) . We recall that is sufficient to 
prove that T has an adjoint operator defined on H , \4] 

This is immediately verified once noted that the adjoint of T is the 

operator T sLce <Tx I y > =Zinz <Tn x I y> * lim <x) Tny > 
'll " 

< x IT Y > \IX, ye H. 
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