IPER - DUAL SYSTEMS AND HILBERT TRIPLETS

By

GIUSEPPE MARINO

Department of Mathematics, University of Calabria, Cosenza, Italy

(Received : November 15, 1987)

ABSTRACT

We introduce the concept of iper-dual systems. Beginning from the iper-dual system $[H^*, S>$, we construct the Hilbert triplet $S \subseteq H \subseteq S'$, where S is a pre-Hilbert space dense in the (real or complex) Hilbert space H and S' is a space of linear functionals on S wider that H. The couple [S', S> so obtained is an iperdual system. Once having introduced the order-bounded nets, we prove that if every weak-convergent net is order-bounded, then S=H. Finally we study four examples of special triplet $S \subseteq H \subseteq S'$.

0. INTRODUCTION

In Section 1 we introduce the concept of iper-dual systems, as a class of couples of linear spaces placed between the class of dual systems [1], and the class of Hilbert spaces.

We construct a space of linear functionals X' by means of the X-weak Cauchy sequences so that $X \subseteq X \subseteq X'$, where [X, X] is a iperdual system.

In Section 2 we consider the iper-dual system [H^* , S>, where S is a pre-Hilbert space, H is the Hilbert space completion of S and H^* is the dual of H. We construct the triplet $S \subseteq H \subseteq S'$ from $[H^*, S>$, in such a way that [S', S> is an iper-dual system, too. The main result obtained in this section is that if every weak convergent net is order-bounded, then S = H.

Finally in Section 3 we study four examples of triplet $S \subseteq H \subseteq S'$, In the exemple 1, H is a separable, complex Hilbert space with a fixed orthonormal basis $\{u_n\}$, $S:=Sp(\{u_n\})$ is the linear manifold spanned by $\{u_n\}$ and S' is constructed as descripted in Section 1. In this context we show that S' is identifiable with C^N , the space of all complex sequences.

In the example $2, H = L_2(\mathbb{R}^n)$ and S is the space $S(\mathbb{R}^n)$ of functions of rapid decrease in \mathbb{R}^n . In this case S' coincides with the space of temperated distributions.

In the example 3,
$$H = l_2$$
 and $S = \left\{ \{a_n\} : \sum_{n=1}^{\infty} |a_n|^2 (n+1)^m < \infty \forall m \in N \right\}$.

We show that $S' = \{ \{b_n\} : \exists c \in R \text{ and } \exists m \in N \text{ such that } |b_n| \leq c (1+n)^m \forall n \in N \}$, who coincides with the dual of S with respect to the topology of conutably normed space that makes S isomorphic to S(R).

In the example 4, *H* is the space of Hilbert- Schmidt operators on a separable Hilbert space **H** and *S* is the space of finite rank operators on **H**. If we denote with $K(\mathbf{H})$ and $\mathbf{B}(\mathbf{H})$ the space of compact operators and the space of bounded operators on **H** respectively, we show that $\mathbf{K}(\mathbf{H}) \subseteq S' \subseteq \mathbf{B}(\mathbf{H})$.

It is useful to observe that in all previous examples, S is not complete in the topology induced by inner product. The fact that S is not complete is the necessary and sufficient condition in order that we obtain an *actual* enlargment S' of H^* .

1. IPER-DUAL SYSTEMS AND WEAK CAUCHY SEQUENCES

Let X, X be two linear spaces. We suppose that :

(IDS-1) X is a linear manifold of X.

(*IDS*-2) There is a functional $[, >: X \times X \rightarrow C$ such that

- (a) the restriction of $| > to X \times X$ is an inner product on X denoted by <1>.
- (b) $[\hat{x}, . > \text{ is a linear functional for every } \hat{x} \in X$
- (c) [., x > is an antilinear functional for every $x \in X$.
- (d) $[\hat{x}, x \ge 0 \forall x \in X \Rightarrow \hat{x} = 0$.

Set $\overline{R} = \mathbb{R} \cup \{+\omega\}$. We define the function (called infi-norm) $\| \|_{\Lambda} : \stackrel{\Lambda}{X \to \overline{R}}$ in the following manner:

 $\|\hat{x}\|_{\wedge} = \sup \{ | [\hat{x}, y > | : y \in X, \|y\| = 1 \}$

where, of course, $||y||^{2} = \langle y|y \rangle$. Then we have

 $(N-1) \|\hat{x}\|_{2} = 0 \quad iff \ \hat{x} = g$

 $(N-2) \|\lambda \hat{x}\|_{\wedge} = |\lambda| \|\hat{x}\|_{\wedge} \quad \forall \lambda \in C$

 $(N-3) ||\hat{x} + \hat{y}||_{\Lambda} \leq ||\hat{x}||_{\Lambda} + ||\hat{y}||_{\Lambda}$

We remark that the generalized Schwartz inequality holds :

$$|[\hat{x}, x > | \leq ||\hat{x}||_{\wedge} ||x|| \quad \forall \hat{x} \in X, \quad \forall x \in X.$$

(of course, $||x||_{A} = ||x|| \forall x \in X$). DEFINITION.

We say that [X, X > is an iper-dual system if (IDS-1),

(IDS-2) hold and moreover

(IDS-3) $\overline{X} \subseteq X$, where \overline{X} is the Hilbert space completion of

12 [

X with respect to the inner prduct <1>.

Let [X, X> be an iper-dual system. We say that a sequence $\{\hat{x}_n\} \subseteq X$ is X-weak Cauchy iff $\exists \lim_{x \to \infty} [\hat{x}_n, y> \forall y \in X]$.

We say $\{\hat{x}_n\}$ is X-weak convergent to $\hat{x} \in X$ iff $\lim_n [\hat{x}_n, y > \forall y \in X]$.

We see immediately that the criterion of weak convergence defined on X is compatible with its linear structure [2].

Furthermore, we observe that there exist X-weak convergent sequences for which the corresponding sequences of infi-norms do not converge to the infi-norm of limit.

Let $L_w(X, X)$ denote the linear space of the X-weak Cauchy sequences in X. Every X-weak Cauchy sequence $\{\hat{x}_n\}$ defines a linear functional $t: X \rightarrow C$ by the law $\langle t, x \rangle := \lim_{n \to \infty} |\hat{x}_n, x \rangle \forall x \in X$.

The set of all linear functionals generated by some X-weak Cauchy sequence is denoted by X'. In the same way, generalizing the notion of X-weak Cauchy sequence, we shall say that a sequence $\{t_n\}$ in X' is a X-weak Cauchy sequence $iff \exists \lim < t_n, x > \forall x \in X$.

Any X-weak convergent sequence in X' is a X-weak Cauchy sequence too. Now let $\{t_n\}$ be a X-weak Cauchy sequence in X', then we can define the linear functional $l: X \rightarrow C$ as $\langle l, x \rangle = lim \langle t_n, x \rangle \forall x \in X$ and we write $l = w - lim t_n$.

In general *l* is not an element of *X* since it is not assured that there exists a sequence $\{\hat{x}_n\}$ in $\stackrel{\wedge}{X}$ which converges *X*-weak to *l*. In the next proposition we shall give a sufficient condition ensuring that $l_i X_{i,j}$

PROPOSITION 1. Let $\{t_n\}$ be a X-weak Cauchy sequence in X'.

If any t_n is generated by a sequence $\{\hat{x}_j^{(n)}\}_{j \in N}$ in \hat{X} which is uniformly weak convergent to t_n in the sense that for every $n \in N$ and every $y \in X$ there exists an integer j=j(n) depending on n but not on y, such that

$$| < t_n, y > -[\hat{x}_{j(n)}^{(n)}], y > | \leqslant \frac{1}{n} \forall y \in X$$

then $l = w - lim t_n$ is an element of X'.

PROOF. Considering the sequence $\{\hat{x}_{j(n)}^{(n)}\}$ in \hat{X} we get that it is a X-weak Cauchy sequence; indeed, from

$$|[\hat{x}_{j(n)}^{(n)}|, y>-[\hat{x}_{j(m)}^{(m)}|, y>|\leqslant| < t_n, y>-[\hat{x}_{j(n)}^{(n)}|, y>|+$$

$$|< t_n$$
 , y> - $< t_m$, y> |+ $|< t_m$, y> - [$\hat{x}_{j(m)}^{(m)}$, y> |

it follows that $\exists \lim [\hat{x}_{j(n)}^{(n)}, y > \forall y \in X$.

On the other hand, the relation

 $| < l, y > -[\hat{x}_{j(n)}^{(n)}, y > | \le | < l, y > -<|t_n, y > | + | < t_n, y > -[\hat{x}_{j(n)}^{(n)}, y > |$ under our hypotheses gives the result $l \in X'$.

On $L_w(X, X)$ we can introduce the following equivalence relation, called the X-weak equiconvergence relation, defined as follows:

$$\{\hat{x}_n'\} \sim_w \{\hat{x}_n''\}$$
 iff $\lim_n [\hat{x}_n', y > = \lim_n [\hat{x}_n'', y > \forall y \in \mathbf{X}.$

It is trivial to see that X' and $L_w(X, X)/\sim_w$ are linearly isomorphic. Set $t \equiv [\{\hat{x}_n\}] \sim_w$. We suppose that $\||\hat{x}_n\||_{\wedge} < M$. If the sequence $\{y_k\} \subseteq X$ is norm-convergent to zero, then

$$0 \leq |\langle t, y_k \rangle| = \lim |\hat{x}_n, \mathbf{y} \rangle| \leq \sup ||\hat{x}_n||_{\wedge} \cdot ||y_k|| \leq M ||y_k||$$

so that $\lim_{k \to \infty} \langle t, y_k \rangle = 0$. Thus t is sequentially continuous (and there-

fore continuous) with respect to the topology on X induced by the inaer product. Hence there exists $x_0 \in \overline{X} \equiv \overline{X}^*$ such that $t = x_0$, where \overline{X}^* denotes the dual space of \overline{X} with respect to the topology induced by the inner product. Therefore we have proved that :

PROPOSITION 2.

If we denote by $L_w^b(X,X)$ the linear subspace of $L_w(X,X)$

of bounded sequences in infl-norm, then \overline{X} and $L^b_w(X,X)/\sim_w$

are linearly isomorphic. In particular, it follows that

 $||x||_{\wedge} < \infty \forall x \in \overline{X} \text{ and } ||\hat{x}||_{\wedge} = +\infty \forall \hat{x} \in X \setminus \overline{X}$

2. HILBERT TRIPLETS AND WEAK CONVERGENT NETS

We shall construct now an iper-dual system by means of an other iper-dual system. In this Section, we denote by Sa pre-Hilbert space with inner product <1>. $(S, T_{<1>}(S))$ denotes the locally convex topological vector space in which $T_{<1>}(S)$ is the topology induced by the inner product. S* denotes the dual space of $(S, T_{<1>}(S))$ and H the Hilbert space completion of S. We denote by D(S) the linear space antiisomorphic to S of all linear functionals $<x|: S \rightarrow C$, with $x \in S$, defined by $<x|: y \rightarrow <x|y > \forall y \in S$. We recall that S=Hiff $D(S)=S^*$. $[H^*,S>$ is an iper-dual system. We construct S' in the same manner as in the previous Section :

$$S' = \{t : S \to C : \exists \{x_n\} \in L_w (H^*, S), t = w - \lim_n | x_n \}$$

We have that $S' \equiv L_w(H^*, S)/\sim_w$ and we have obtained the triplet

$$S \leqslant H \equiv H^* \equiv S^* \subseteq S'$$

[S', S > is an iper-dual system .

REMARK 1. It is easy to prove that the Hilbert space H^* is identifiable with $L^b_w(D(S), S)/\sim_w$ in which bounded S-weak Cauchy sequences from D(S) are involved. We shall remember that a standard procedure for constructing the completion H^* of D(S) is based on strong Cauchy sequences using the strong equiconvergence relation

$$\{x_n'\} \sim_s \{x_n''\} iff \lim ||x_n'-x_n''||=0$$
.

The above quoted result could seem very surprising, since S-weak Cauchy sequences are "much more" than strong Cauchy sequences from D(S). However, it must be remarked that the S-weak equiconvergence relation is weaker than the strong equiconvergence relation, so that S-weak equiconvergence classes are "larger" than strong equiconvergence classes .

REMARK 2. If $\{x_n\}$ is a sequence from H* which is norm-bounded, then the existence of the $\lim_{n \to \infty} \langle x_n | y \rangle \forall y \in S$ implies the existence of the

 $\lim_{n} < x_n \ t > \forall t \in H$. However, the conditions

$$(\mathbf{i}) \quad \{x_n\} \sim w \ \{x_n'\}$$

(ii)
$$\exists \lim_{n} \langle x_n, t \rangle \forall t \in H$$

(iii) $||x_n|| \leq M$

do not imply either the norm boundedness of $\{x_n'\}$ or the existence of the $\lim_{n \to \infty} |x_n| > \forall t \in H$.

We can endow the space S^* with the $\sigma(S^*, S)$ -topology generated by the basis of neighbourhoods of zero

$$U(x_1, \ldots, x_n; \varepsilon) = \{l \in S^* : | < l, x_j > | < \varepsilon \forall j = 1, \ldots, n\},$$
$$x_1, \ldots, x_n \in S, \varepsilon \in R_+$$

so in this way $(S^*, \sigma(S^*, S))$ is an Hausdorff locally convex space whose topological dual is S. We recall that $\sigma(S^*, S)$ is the weakest topology for S* with respect to which all the element of S are continuous. Hence we have that $\sigma(S^*, S) \leq T_{<1>}(S^*)$.

The most important properties of the Hilbert trip'et $S \subseteq H \cong H^* \subseteq S'$ in relation to the corresponding iper-dual system or sumarized in the following statements :

(a)
$$(S, \sigma(S, S'))$$
 is a nuclear space;

(b) the canonical embedding $i : (S, \sigma(S, S')) \rightarrow (H, \sigma(H, H^*))$ is continuous;

(c) H^* is dense in $(S', \sigma(S', S))$.

PROOF. (a) The topology $\sigma(S, S')$ for S is the projective topology with respect to the family $\{(C_{\alpha}, L_{\alpha}) : C_{\alpha} = C, L_{\alpha}S\}$. Since each $C_{\alpha} = C$ is nuclear, then the space $(S, \sigma(S, S'))$ is nuclear too [3], (c) We shall make the identification $H \equiv H^*$. Let $t \in S'$. Then t = w-lim x_n , $\{x_n\} \in L_w(H^*, S)$. We shall define $t_k := w$ -lim $\langle x^{(k)} \rangle_n$ where $\{x_n^{(k)}\}$ is the sequence in $L_w^b(H^*, S)$ defined by $\{x_1, x_2, \dots, x_k, x_k, x_k, \dots\}$. It results that $\langle t_k \rangle, y > = \langle x_k \rangle y > x_k$ and so $\lim_k \langle t_k, y \rangle = \langle t, y \rangle \forall y \in S.$

For sake of completeness we give now briefly some definitions and results useful in the sequel.

16 1

A partially ordered set I is said to be directed if, given $\alpha, \beta \in I$ there exists $\gamma \in I$ such that $\alpha \in \gamma$ and $\beta \leq \gamma$.

A generalized sequence or a net in a topological space T is a mapping $f: I \rightarrow T$, where I is a directed set. As in the case of sequences, we write $f(\alpha) = x_{\alpha}$ and we represent the net by its image $\{x_{\alpha}\}$.

Given the net $\{x_{\alpha}\}$ in the topological vector space T, we say that $x \in T$ is the limit of $\{x_{\alpha}\}$ (and we write $x = \lim x_{\alpha}$) or that x_{α} converges to x if for any neighbourhood U_x of x there exists $a_0 \in I$ such that $x_{\alpha} \in U_x \forall \alpha \ge a_0$. It is well known that a function f from a topological space S to a topological space T is continuous iff for every convergent net $\{x_{\alpha}\}$ in S, with $x_{\alpha} \to x$, the net $f(x_{\alpha})$ converges in T to f(x). A net $\{x_{\alpha}\}$ in S is said to be order-bounded if there exists $a_0 \in I$ such that $\{x_{\alpha} : \alpha \ge a_0\}$ is norm-bounded.

The main result of this section is the following

THEOREM. (a) $S=H \Rightarrow L_w(H^*,S) = L_w^c(H^*,S)$

(b) If every net $\sigma(S, D(S))$ - convergent is orderbounded, then S=H.

PROOF. (a) It is an obvious consequence of the Uniform Boundedness Principle [4].

(b) It is sufficient to prove that $D(S) = S^*$. Since the topological dual of $(S, \sigma(S, D(S))$ is D(S), it is sufficient to show that every $l \in S^*$ is $\sigma(S, D(S))$ - continuous on S. For this, let $l \in S^*$ and let $\{x_{\alpha}\}$ be a net $\sigma(S, D(S))$ - convergent to x. Since $l \in S^*$, there exists $\{y_k\} \subseteq D(S)$ such that $||L - y_k|| \to 0$. Therefore $k \to \infty$

 $|<l, x_{\alpha}-x>|=|<l\pm y_{k}, x_{\alpha}-x>|\leqslant || l-y_{k} || (||x_{\alpha}|| + ||x||) + |< y_{k}| x_{\alpha}-x>|.$ Since $\{x_{\alpha}\}$ is order-bounded, there exist an $a_{0} \in I$ and a real number M>0 such that $||x_{\alpha}|| < M$ for every $\alpha \ge \alpha_{0}$. So, $\varepsilon > 0$, there exists $k_{0} \in N$ such that $||y_{k_{0}}-l|| < \varepsilon/2$ (M+||x||). Moreover, as $\{x_{\alpha}\}$ is $\sigma(S, D(S))$ - convergent to x, there exists $\alpha \in I$ such that $|\langle y_{k_0}| x_{\alpha} - x \rangle| \langle \varepsilon/2$ for every $\alpha \geqslant \overline{\alpha}$.

Let $a_1 \ge \{\alpha_0, \alpha\}$. Then for every $\alpha \ge \alpha_1$ we have

 $|<l, x_{\alpha}-x>| \leq ||l-y_{k_0}||(||x_{\alpha}||+||x||)+|< y_{k_0}|x_{\alpha}-x>| < \frac{\varepsilon}{2(M+||x||)}(H+||x||)$

+
$$\frac{\varepsilon}{2} = \varepsilon$$
, *i.e.* $lim < l, x_{\alpha} > = < l, x > .$

REMARK. The statment (b) has a converse when H is finite-dimensional (i.e. in a finite-dimensional Hilbert space every weakly convergent net is order-bounded), but the author ignores whether this property characterizes any Hilbert space.

3. EXAMPLES

EXAMPLE 1. We denote by H a separable, infinite-dimensional complex Hilbert space, by $\{u_n\}$ an orthonormal basis fixed in H and by $S=Sp(\{u_n\})$ the linear manifold spanned by $\{u_n\}$.

Let $E_k: H \to H$ be the projection on the finite-dimensional subspace $S^k: = Sp(u_1, \ldots, u_k):$

$$E_k x := \sum_{j=1}^k \langle u_j | x \rangle u_j \quad \forall x \in H.$$

It is straightforward to verify that the functional $<1>_{k}: S \times S \rightarrow C$ defined by

$$< x \mid y >_{k} : = < E_{k}x \mid E_{k} y > = \sum_{j=1}^{k} < x \mid u_{j} > < u_{j} \mid y >$$

is a degenerate inner-product on S. We shall denote S_k the space S endowed with the degenerate inner product $<1>_k$.

The function
$$p_k : x \rightarrow p_k(x) := \left(\sum_{j=1}^k |\langle u_j | x \rangle|^2\right)^{1/2}$$
 is a seminorm on S.

Of course for the family of seminorms $F(\{u_n\}) = \{p_k : k \in N\}$ holds $p_k(x) \leq p_{k+1}(x) \forall k \in N$ and $\forall x \in S$. In the previous Section we have endowed the pre-Hilbert space S with the weak topology $\sigma(S, D(S))$, that is of the topology generated by the family of seminorms $F(D(S)) = \{q_k : = 1 < x \mid . > 1, k \in S\}$.

We show now that in the present example we have that

F(D(S)) is equivalent to the totally ordered family of some $F(\{u_n\})$.

PROOF. For every q_x , $x \in S$, we can write $x = \sum_{j=1}^{n} a_j u_j$ and so for every $y \in S$,

$$q_{w}(y) = |\langle \sum_{j=1}^{n} a_{j}u_{j}| y \rangle| \leqslant \sum_{j=1}^{n} |a_{j}|| \langle u_{j}| y \rangle|.$$

If $A = max(|\alpha_j|)$, we have that $q_x(y) \leq A \sum_{j=1}^n |\langle u_j| y \rangle | \leq A \sum_{j=1}^n p_j(y)$.

Moreover, $(p_k(x))^2 = \sum_{j=1}^k |\langle u_j | x \rangle |^2 \leq (\sum_{j=1}^k |\langle u_i | x \rangle |)^2$

$$= \left(\sum_{j=1}^{k} q_{u_j}(x)\right)^2 \Rightarrow p_x(x) \leqslant \sum_{j=1}^{n} q_{u_j}(x) .$$

Finally, we construct S'. We recall that

$$S' = \{ t: S \rightarrow C : \exists \{x_n\} \in L_w (H^*, S) \text{ such that} \\ < t, y > = \lim_n \langle x_n | y \rangle \forall y \in S \}.$$

Since S = Sp ({ u_n }), we have that

20]

Let $t \in S'$. If $a_j = \langle t | u_j \rangle \forall j \in N \text{ and } y \in S, y = \sum_{i=1}^r \lambda_i u_i$, then

$$\langle t, y \rangle = \sum_{i=1}^r \lambda_i a_i$$
.

The (*)¹ suggest to put, formally, $t = \sum_{j=1}^{\infty} \alpha_j u_j$, so we can identify t with the sequence $\{\alpha_j\}$.

The map $\phi: S' \to C^N$, defined for every $t = \sum_{j=1}^{\infty} \alpha_j u_j$ in S' by $\phi(t) = \{a_j\}$ is a linear isomorphism between S' and C^N .

In fact it is easy to verify that ϕ is linear and injective. If $\{\alpha_j\} \in C^N$ we consider the sequence $\{x_n\} \subseteq S$ defined by $x_n = \sum_{j=1}^n c_j u_j$. It is easy

to see that $\{x_n\} \in L_w$ (H*, S) and if $t=w-\lim_n x_n$, then $\phi(t)=\{a_i\}$, thus ϕ is surjective.

EXAMPLE 2. If H is the Hilbert space $L_2(\mathbb{R}^n)$ of square Lebesgueintegrable complex-valued functions on \mathbb{R}^n and S is the space $T(\mathbb{R}^n)$ dense in $L_2(\mathbb{R}^n)$ of the functions of rapid decrease on \mathbb{R}^n , then S is the space of temperated distributions $T(\mathbb{R}^n)$ according to the definition in [5]. We have so obtained the iper-dual system $[T(\mathbb{R}^n), T(\mathbb{R}^n) >$ and the Hilbert triplet $T(\mathbb{R}^n) \subseteq L_2(\mathbb{R}^n) \subseteq T(\mathbb{R}^n)$.

EXAMPLE3. Let $H = l_2$ and S = T, where

 $T = \{ \{a_n\} \in l_2 : \Sigma \mid a_n \mid 2 (n+1)^m < \infty \forall m \in N \}$

We show that S' coincides with the pual of T endowed with a suitable topology. If $m \in N$ is fixed, we define the norm $|| ||_m$ with

 $||a||_{m} := (\Sigma | a_{n} |^{2} (n+1)^{1/2} \forall a = \{a_{n}\} \in T.$

The family of norms $(|| ||_m)_{m \in N}$ is a directed family of norms, that is $\forall k_1, \ldots, k_r \in N, \exists k \in N \text{ and } \exists c \in R_+ \text{ such that } a ||_{k_1} + \cdots + a ||_k$ $\leqslant c || a ||_k \forall a \in T \text{ since, put } k = max (k_1, \ldots, k_r), \text{ we have }$ $|| a ||_{k_1} + \cdots + || a ||_{k_r} \leqslant r || a ||_k.$

We consider now the countably normed space $(T, || ||_m)$. It is well known that a sequence $(a^{(n)})_{n\in\mathbb{N}}$ in $(T, || ||_m)$ converges to zero iff $\lim_{n} || a^{(n)} ||_m = 0 \forall m \in \mathbb{N}$. It is also easy to prove that $(T, || ||_m)$ is a complete countably normed space.

The proof of following lemmas 1 and 2 are in [6]:

LEMMA 1. A linear functional $t: (T, || ||_m) \to C$ is continuous iff $\exists c \in R_+ \text{ and } \exists k \in N \text{ such that}$

 $|t(a)| \leqslant c ||a||_{k} \forall a \in T.$

LEMMA 2. (UNIFORM BOUNDEDNESS PRINCIPL IN COUNTABLY NORMED SPACES). Let X be a complete countable normed space with $|| ||_r$ a directed sequence of norms. Let $\mathbf{F} \to \mathbf{e}^{-4/5}$ in X*, the dual of X. If $\{F((f): F \in \mathbf{F}\}\)$ is bounded for each f X then there is a $c \in R_+$ and an $r \in N$ so that, for all $f \in X$ and all $F \in \mathbf{F}$,

 $|F(f)| \leq c ||t||_r.$

Utilizing the Lemmas 1 and 2 it is now easy to prove the

LEMMA 3. Let $(x^{(n)} \subseteq l_2$ be a sequence in l_2 such that $\exists \lim_n \langle x^{(n)} | \\ |a \rangle \forall a \in T$. Then, if $t = w - \lim_n \langle x^{(n)} |$, we have that $t \in (T, ||m||)'$, where (T, ||m|)' is the topological dual of the countably normed space (T, ||m|).

LEMMA 4. Let $(e^{(n)})$ be the canonical basis in $l_2(e^{(n)} = \{\delta_{kn}\}_{k \in N})$.

Let $T \in (\mathbb{T}, || ||_m)'$, $b_n = T(e^{(n)})$. Then there is is a $c \in \mathbb{R}$ and a $k \in N$ so that $|b_n| \leq c (1+n)^m$ and

$$(*)^3 \quad T \stackrel{a}{=} \sum_{n=1}^{\infty} a_n b_n \quad \forall a \in \mathbb{T},$$

Conversely, if $||b_n|| \leq c(1+n)^m$, then $(*)^3$ defines an element of $(\mathbf{T}, || ||_m)'$.

PROOF. If $T \in (T, || ||^3)'$, then from lemma 1 follows $|b_n| \leq c$ $(1+n)^m$ and moreover the $(*)^3$ is trivial, Conversely, if $1 b_n | \leq c$ $(1+n)^m$ then

$$| \Sigma a_n b_n |^2 \leq (\Sigma | a_n |^2 (n+1)^{2m+2}) (\Sigma | b_n |^2 (n+1)^{-(2m+2)})$$

$$\leq 1 / 6 c^2 \pi^2 ||a||_{2m+2}^2$$

and so, still from lemma 1, the $(*)^3$ defines an element of $(\mathbf{T}, || ||_m)'$

THEOREM. In the previous notations, we have $S' = (\mathbf{T}, || \cdot ||_m)'$,

PROOF. $S' \subseteq (\mathbf{T}, || ||_m)'$ is the Lemma 3.

Conversely, if $T \in (T, || ||_m)'$, then from Lemma 4, if $b_n = T(e^{(n)})$, it results $|b_n| \leq c(1+n)^m$ and $T(a) = \sum a_n b_n$. But then, put $x^{(n)} = (b_1, \ldots, b_n, 0, 0, \ldots)$ we have that $\forall a \in T, \exists \lim_n \langle x^{(n)} | a \rangle$ $= \sum b_n a_n = T(a)$

We have thus obtained the iper-dual system [(T, $|| ||_m$)', T> and the Hilbert triplet { $\{a_n\}: \sum |a_n|^2 (n+1)^n < \infty \forall m$ } $\subseteq \{\{a_n\}: \sum |a_n|^2 < \infty \} \subseteq \{\{a_n\}: \exists c \in R_+, \exists m \in N, |a_n| \leq c(1+n)^m\}$. **REMARK.** If (T(R), $|| ||_{b,h}$) denotes the countably normed space of functions of rapid decrease on R with $|| ||_{k,h}$ defined by $||\Phi||_{k,h}: =$ $|| x^k \Phi^{(h)}(x) ||_{\infty}$, where $|| \Phi ||_{\infty}: = \sup_{x \in R} |\Phi(x)|$, it is well known that $x \in R$ the countably normed space $(T(R), || ||_{k,h})$ and $(T, || ||_m)$ are isomorphic ([6]). This provide, "en passant", a proof of equivalence of definitions of tempered distributions via linear functionals ([f]) and via weakly Cauchy sequences [5].

EXAMPLE 4. Let H be a separable Hilbert space, Let B(H) be the space of bounded operators on H. We are interested to the following linear varieties of B(H):

F (H): = { finite rank operators }
HS (H): = { Hilbert-Schmidt operators }
K (H): = { compact operators }

We recall that [8]:

- (1) $F \in F(H)$ iff the range R(F) of F is finite-dimensional.
- (2) $K \in K(H)$ iff $\exists \{v_i\}, \{w_i\}$ orthonormal bases of H and $\exists \{\mu_i\} \subseteq R_+$ with $\mu_1 \gg \mu_i \forall i \in N$ and $\lim \mu_i = 0$, so that

$$(*)_{\mathbf{1}}^{4} \qquad K x = \sum_{l=1}^{\infty} \mu_{l} < x \mid v_{l} > w_{l} \quad \forall x \in \mathbf{H} .$$

- (3) $T \in HS$ (H) iff $T \in K(H)$ and the sequence $\{\mu_l\}$ of $(*)_1^4$ is in l_2 ,
- (4) T (H) \subset *HS* (H) \subseteq K(H) \subseteq B (H).
- (5) If $T_1, T_2 \in HS$ (H) and $\{u_i\}$ is an orthonormal basis of H, the numerical series $\sum_{i=1}^{\infty} \langle T_1 u_i | T_2 u_i \rangle$ is absolutely convergent and

the sum is independent from the orthonormal basis $\{u_i\}$.

(6) HS (H) can be endowed with the inner product $\langle T_1 | T_2 \rangle$:= $\Sigma \langle T_1 u_i | T_2 u_i \rangle$ where $\{u_i\}$ is any orthonormal basis in H. With respect to this inner product, HS (H) is a separable Hilbert space, which we denote by H.

(7) If we denote with S the space F(H), it results that S is dense in H.So we can construct S' as in Section 2.

On the contrary of example 1 in which beginning from the space S of finite sequences we have obtained that S is the space of all sequences, now, beginning from the space S of finite rank operators, we obtain that $S' \subset B$ (H) and so it is not made up of all linear operators on H, as it results from the following theorem :

THEOREM In the previous notations, we have $K(H) \subseteq S' \subseteq B(H)$.

PROOF. Let $K \in K(H)$. Then $Kx = \sum_{1}^{\infty} \mu_{\iota} < x|v_{l} > w_{l}$, $\forall x \in H$. We

can look to K as a functional on S defined by

$$K(F) := \sum_{l=1}^{s} \lambda_l < K_{\nu_l} | W_l > \forall F \in S, Fx = \sum_{l=1}^{s} \lambda_l < x | \nu_l > W_l$$

For each $n \in N$ we define $K_n \in H$ with

$$K_n X = \sum_{l=1}^n \mu_l < x \mid v_l > w_l$$
,

and we show that $K = w \lim K_n |$.

Indeed if $F \in S$, $\mathbf{F}_{x} = \sum_{l=1}^{s} \lambda_{l} < x \mid \widetilde{v_{l}} > \widetilde{w_{l}}$,

$$(*)_{2}^{4} \quad \langle K_{n} | F \rangle = \sum_{l=1}^{\infty} \langle K_{n} v_{l} | F v_{l} \rangle = \sum_{l=1}^{s} \lambda_{l} \langle K_{n} v_{l} | w_{l} \rangle$$

and so $\lim_{n \to \infty} |F| = K(F)$. In this way we have proved that $K(H) \subseteq S'$.

We show now that $S' \subseteq B(H)$. Let $t = w - \lim_{n \to \infty} \langle T_n \in HS(H) \rangle$. From $(*)_2^4$

24]

it is easy to see that

$$(*)_3^4 \quad \exists \ lim < T_n x \mid y > \forall x, y \in \mathbf{H}$$

(in effect this is a necessary and sufficient condition in order that $\exists \lim_{n \to \infty} \langle T_n | F \rangle \forall F \in S$).

Of course the $(*)_3^4$ is equivalent to

 $(*)_4^4 \quad \exists \lim_n \langle T_n^* x | y \rangle \quad \forall x, y \in \mathbf{H}$

(we recall that $T \in HS(\mathbb{H}) \Rightarrow T^* \in HS(\mathbb{H})$. where T^* denotes the adjoint of T).

Now from $(*)_{3}^{4}$, once fixed x, from the Uniform Boundedness Princ-

iple and from the Fréchet-Riesz theorem, it follows that $\exists ! Tx \in \mathbf{H}$ such that

$$\lim_{n} \langle T_n x | y \rangle = \langle T x | y \rangle \quad \forall y \in \mathbf{H}.$$

As x run over **H**, we obtain a map $T : \mathbf{H} \to \mathbf{H}$ which is linear, as it is easy to verify.

Analogously from $(*)_4^4$ we obtain a linear mapping T satisfying

$$(*)^4 \lim_{\mathbf{x}} \langle \mathbf{T}_n^* \mathbf{x} | \mathbf{y} \rangle = \langle \mathbf{T} \mathbf{x} | \mathbf{y} \rangle \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{H}$$

There remain to prove that $T \in B(H)$. We recall that is sufficient to prove that T has an adjoint operator defined on H, [4].

This is immediately verified once noted that the adjoint of T is the

operator T since $\langle Tx | y \rangle = \lim_{n} \langle T_n x | y \rangle = \lim_{n} \langle x | T_n^* y \rangle$

$$= \langle x | T y \rangle \forall x, y \in \mathbf{H}.$$

REFERENCES

- [1] H. H SCHAEFER, "Topological Vector Spaces", Graduate Text in Math. Vol. 3, Springer-Verlag: New York (1971).
- J. KOREVAAR, "Mathematical Methods", Vol. 1, Academic Press New York (1971).
- [3] F. TREVES, "Topological Vector Spaces", Distributions and kernels", Academic Press, New York (1967).
- [4] G. HELMBERG, "Introduction to Spectral Theory in Hilbert Spaces", North-Holland, Amsterdam-London (1969),
- [5] D. S. JONES, "The theory of generalised functions", Cambridge University Press (1982).
- [6] B. SIMON, Distributions and Their Hermite Expansions, J. Math. Phys. 12, 140 (1971).
- [7] L. SCHWARTZ, "Théorie des distributions", Hermann, Paris (1966).
- [8] G. CIMMINO, Appunti di Analisi Funzionale linerre, Istituto Nazionale di Alta Matematica "F. Severi", Roma (1980) unpublished.