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ABSTRACT

We consider permutations 4 and B of a finite set of d elments
such that 4, B, and C=4B have respective orders a, b, ¢ > 2. G. A.
Miller showed in 1900 that for 2<C ¢<C b ¢,such permutations always
exist with d =¢, ¢+1, or c—f—2 according to the parities of a, b, c. If
s=max [s (a), s(b) s(c)], where s(a) is the sum of the primary
factors of g, then according to parities, d > s, s+1, s4+2. We find an
infinite class of triples a, b, ¢ (with a=2) for which d must be larger
5 than s+2 Hov;éver, the cases ‘a:S, 4, 5,6, as well as other large
vfamilies of cases, support the conjecture that, for g > 3, one can

always choose d < s+2.

Introduction

We consider the following much studied question: Given three
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integers a, b, ¢ > 2, what are the finite permutatlon groups G gener—
ated by two :elements 4 and Bof orders g'and b, whose product C=A4B
has order ¢? G. A. Miller .[25] refers to a remark of Burnside
[, p. 15]: “A relation of the form $,=S,S- between three operations
of the group will not in general involve any necessary relation between
the order of §p and the orders-of S, and §,.”

This question has arisen in conréction with finite é.imple groups,

For example, when is the alternating group (or the symmetric group)

of degree d generated by elements 4 and B, of orders g and b, such

that C=4B has order ¢ ? (See Macbeath [23] for the case a==2, b=3,

¢ > 7and also Conder [14, 15] who treats the case a=2, b=3,
>7)

The same question arises in connection with a well known
theorem, first conjectured by Fenchel [19], that every Fuchsian group
G is virtually torsion free, that is, G contains a subgroup of
finite ‘inflex with no nontrivial element of finite order.
Fenchel observed that the proof refluces easily to the case that
G sisa trigrgle group, ‘G= < 4;'B: A* =B® = (4B)*=1 >, where it
must-besshown' that:G hds a finitesimage in which the images of 4, B,
and -Cs=#AB rétain thé orders g, b, and ¢. This case was proved by
Fox’'[217 in 1952,

: Ho wever, thlS result for trlangle groups is contained in  what
appears to be the first paper on thlS subje«,t by G, A. Miller [25] in
1900, where it is shown that, for all a, b, c > 2 there €xist permuta-
tions 4 and B of a finite set Q such that 4, 8, and C=A4B have orders
a, b, and ¢ and that Q has d =m, m+1, or m+2 elements, for m the
maximum:of q,7#, c.:Miller’s proof,:as. wellas ‘the later -proof of Fox,
explicitly constructs permutations A4.and . Bwith _the ‘required. pro-
perties, Later proofs using matrices were given by Feuer [20] and by
Mennicke :[24]. :In, a second. paper, -Miller ;[26] . showed that,. for
infinitely many d, 4 and B could be chosen as permutations - of .aset -
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Q of d elements, such that the group G generated by 4 and Bis
transitive on Q, thus obtaining infinitely many nonisomorphic

groups G.

A proof of Fenchel’s theorem by entirely different means appears
to have been‘given first' by Selberg [30]. It uses the well known fact
that a Fuchsian group ‘G contains only finitely many conjugacy
classes of elements of finite order, and also the fact that G, v1ewed as
a finitely generated matyrix group over a field, is residually finite.

From this it follows that .there is a map from G onto a finitc group in -
which the image of each element of f1n1te order has the same order

as the original; the kernel of thlS map. is then a torsmn frce subgroup

of finite index.

A third approach lies in the observation that if a Fuchsian group

G acts on the hyperbohc plane in the usual manner, with a fundam—
ental region A, ‘then the existence of a tors1on free suborroup S (lnence'
a surface group) of index d in G is equlvalent to the ex1stence of a
union 2 of 4 translates gA of A such that 2 isa fundamental reglon
‘for a surface group S. This approach has been followed by Edmonds
' l:.wmg, and Kulkarm [16 17, 18] who show that under the obv1ous
-necessary condmons a closed orlcntable surface can always be tessell—-
ated into d polygons each with r s1des and with prescrlbed vertex
angles a1,...ar. (Here the closure of a face is not requlred to be s1mply
connected ) From this they deduce the followmcr Let Gbea Fuch51an

group with elliptic generators of orders My, ,mr >2 and let m be the least
common multiple of the m;. In the spec1al case that G has no parabollc
generators, that m is even, and that Zm/m is odd, define $=2, and
otherwise take §=1. Then G contains a torsion free subgroup of index
d > lifand onlyif disa mulﬁtipl,epf do=3m. (They note that, these

subgroups need.not be normal, and that the determination of the
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deep number theoretic questions.)

They obtain an vinterpretation of their results in terms of permut—
ation groups. Given my,...,mr > 2, where r > 3 and § and dj are as
before, the symmetric group of degree dy contains permutations
Ay,..., 4. such that each 4; is a product of dg/m: disjoint cycles of length

mi, that d;,...;4, =1, and that the subgroup generated by Ay,...,4r is
transitive. ’

In Part T of this paper we give a version of Miller’s ‘plv"oof of his
first result, in a pictorial (or geometric) form that we believe to be
more perspicuous, This method, which has been much used eisewhere
i4, 5, 6, 7, 13, 14, 15, 32, 33, 34, 35] lies in constructing of a ““coset

graph’ for G, relative to the generators 4 and B. a

In Parts IT and III we present somé f;:sults and a conjécture regarding
the smallest p0551ble degree d=d (a, b,c) of a subgroup G of the symmetric
group S that i is generated by e]ements A and B such that 4,8, and 4B
have orders g, b, and ¢. It is easy to see that if the largést of g, b, cis
prime power,thenv Miller’s lower bound for d is best possible.But for gene-
rala, b, c one can do better. The least possiblbe' degree of a permutation of
order m > 2 is s(m) the sum of the factors in the primary decomposition
of masa product of powers of distinct primes. Clearly d=d (a, b, ¢) >
s=s(a, b, ¢), the maximum of s(a), s(b), s(c); the same considerations
as in Miller’s argument show that, according to conditions of parity,
one must have d >sd>s+1, ord>s + 2. One is tempted to
¢dnjecture that d < sk +2, that'is, thatin all cases dis oﬁe of s, s+1,

or s+2.

‘Suppose by symmetry that s(a) < s(é) < s(b). We show 'that
the éxtreme value d=Max [a, b, c] 4 2 given by -Miller is attained
only if p=2r for some'r > l-and either a=b==c, or else @ and ¢ are

both odd and g, ¢ < b. Contrary to the . tempting conjecture above,



andBof the set Q of vertlces of K such that K ( B)

" “léads us to behe\;e that d s+2 whenev\.r a>. 2

Although the plctorxal mterpretatlon used in :Part I' has guided
our rhmkmg in Parts IT and III we have not used it there.

PART'L MILLER'S TH M.

Let 4 and B be “;-)e‘r;oufat‘ions of a finite set Q. We define a
2-complex K=K(4,B) as follows. The vertices (points, O-cells)of K are
the elements P of Q.The 2-cells copsist of edges’j JOlnlng dlstmct pomts y
and ¢ 1f and only if q is one opr pA‘l, pB pB L If (pl, ,pm),

miz 2, is a nontr1v1a1 cycle of A4 [or of B], we adJom as a 2 cell an

A-face [or B—face], that lS an m—gonal dlSC, orlen ed‘ 50 that its
boundary is the m—gon thh VErtices Pry...,pm in cychc order (If m= 2

this choice of orientation is arbltrary.)

Suppose conversely that é ‘QLe"gmplex K is given, together with a

- division of its 2—cells mto A- faces and B—faces such that two A-faces [or

w ¥ Ty 4
twe B-fages] are always dlSjOlnt, and with a spemf‘watlon of an’ orlen-
tation of each face.: Then it is clear how to recover perﬁiutatlons A4

:o’ Wc Shau

" Coistruct “our permutanons 4 ana Bin this way, by pxecmg together

. thé complex’ K*K(A BY.

ed‘ below, all

vertlces ‘and a1t Bfaces will have b vertxces

S In he’ complexes K co

_one d—digon with two vertices if ¢ is even, or one B—dzgon if. b is  even.

‘Thus an A—-face will be understood “to have a vertices, and a B—face& b

vertices, unless otherwise noted. The complex K will always bé conne-
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cted. Moreover (after possible deletion of a single A-face) K will be
- simply connected, and embedded in the plane in such a way ‘that all
A—faces are oriented clockwise and all B-faces counterclockwise. In all
cases C=4B (which we i‘htér’preths A followed by B) will consist ofa
single cycle of length c, together with a possxble fixed point (cycle of

- length 1) o, if ¢ is even, a possible transposition (cycle of length 2)

We begin with a family of COmpiexes Kn‘,‘for n > 0. For given a, -
b, and n, the complex K, consists of n 4-faces 4y, ..,dn and n+1 B-

faces By,...,Bn. Each A; has one vertex in common with B;_; and one

with By, and the faces are otherw1se disjoint. This is 1llustrated in

'F1gure 0.

Figare 0.

Inspec.tlon shows that Kn has | é"_b+ nd vertlces, whcrc d= a+b—~2
::a_nd that C=4B consists of a single cycle of lcngth c==Cn.

" Bxcept for Ko, in which 4 is trivial, each K,, exhlblts Adand B

of orders a and b, with C=A4B of order ¢s. For given g and b, we reach .

the remaining values ¢ 2 b by attaching additional A—fgccs to- By- |

i.and By, together possibly with one furfher A—digoﬁ or }B—.digon. The

manner ‘of attaching thesé' additional féces is described in the following

lemmas.



LEMMA 1. Let P and Q be two cyclic permutations having in
common only an odd number vof ;*ertices, which occur consecutively in P
and Q. Then PQ is a s,itiélé cycle.

Proof. We may suppose that P =(Dys..c,Pks Fs-+-s'm) and Q=(p1,...,pk,
£15.--s82) where k is odd. Then ;nspection shows that PQ =(p1, P3s.-sPk,

Tysas¥my Pos DaseorPk1s sla‘--:sﬂ)‘ -

This is illustrated in Figure I, 0

Figure 1.

Lemma 2. Let P and Q be cyclic permutations having in common
only an even number of vertices, which occur as in Figure 2.Then PQ has
a single fixed point, and is transitive on ther emaining vertices.

Proof. I-f'P:—-(Pz,Pl,P3,P4,‘...,pk, 715.--5Fm), for k even, Q=(P1:Pz,---,pk,
$1,--5%n), then .

PQ=(p) (P15 Pas Ps++-sDks ThseessTms D3y DbyesesDimy Sovee,Sn) s |
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Figure 2.

Lemimia 3. Let P and o !zg&ggljg@eg;mytqﬁon& having in common
only an even number-of .yertices, Which occur as in Figtire 3. Then PQ

has a singlé‘transposition, and is‘transitive on the remaining \sé?i‘i@es.




REOOL. 6P =Py ¢; Dis Doy P iBhs Piyst), k even; and
Q=(p15--:Px> $1,.-.35), then | » o
PO =(ps, q) (P1_3P4, pls,...,ék,)'l,...,rl,,, 73, p5,..,,p;;-_; S100isSi) - | o

We ’:need 'oné more rather. s‘p‘ecial lemma. o |

Liemma 4. Qruppose > 04§ even and k is odds: suppese further
‘tHatéither k = 1 and 2 + m < ¢ or that 2+m+k<c Thcn
there exist permutations 4 and B ofa set-Qof ¢ ‘elements -such that

(i) 4 has order @ = mk and (ii) B and C = 4B havt_: order ¢.

‘Proof. Let @ = {1,2,..;¢}. If B'= (1'2... cyand 4 = (1 3) (245

wim-++2), ‘thén’ Cl—AlB—(14-6 m+23257, m+1
3 40, Wk =1, we take 4 _A1~whenceC—— C1.
ik S 1 wetake 4 = 4 Ay where A2 = (m+3 m-]-flv m-i-k-l—-?)
. By Lemma 1»»c"7—A'2CI is a cycle of 1eﬁgth'ic“ O o s

We shall prove the’ followmg version of Mlller s theorem :

Theorem 5. Let a; b  be mtegers, 2 \ b < c Then there'v
exist pérmuitations A’ ahid'B of aset Qof d ¢ + 2 elements such that
- AyB, and C= AB have ordersa by and c. The set Q can: be takon wzth‘

d=c elements and’ herice wzth Ca _smgle cycle exc,‘ept: m}tlré followmg

case,

() Ifa=b = =6, then the smallest value do of
. d—iﬂjzsd0~7_.c+ 1,

@y Ifa= b= c =0T, P 1, 1hen1he Smallest varluedo afd zs N
d() ="¢" + 2 - ’ ‘

(3) Ifa—2'r>l andb ,c-—a-[-l thendo-—c—i—-l

(4) If a, b are odd and ¢ even, then. in certam cases (in fact if and“
only if ¢ is apower of2) do . C + 2.
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(3) If a, c are odd and b = ¢ — 1, then in certain cases {for ‘example,
szzsapoweron)do = ¢ 4 1,

; Proof We first treat the case p = ¢. Ifd = ¢, then B and C must
be single cycles of the same length b = c, whence Band C have the
same parity and 4 must be an even permutation, If 4 is odd, we take

.. A to be a single cycle of _leggth a, together with- fixed points, and

attach this cycle to a ¢ -cycle Bin the m"L’nnéxf of Lemma 1 to

" obtain a-c-cycle C.="AB.

, ‘,We rriaiy now suppose that g is even, a"_—:2’rk;’,- >1.k odd,

- Suppose first thatg = b = ¢ = 6. Now one of 4, B, C, say 4, must
_ be an even permutation. Since 4 must contain one cycle of even

length, it must contam two_such, and 4 must also contain a cycle of
order dividible by 3 This implies thatd > 7. The yalue d=17 can
be realized by taking Q= {1,2,...,6,p}, 4 = (13) (24) (6 5 p),
B = (1,2 ... 6) (p), whence C = (1 4 3 25 p) (6),

U k=3 and r>»2 then k + 2. (k—1) < 27 (k—1) whence
2420+ k2% =0a< b =c and Lemma 4 apphcs_ ,‘t,yo‘ give d=c.
I k>5 then k + 2<2 (k—1) < 2(k— 1), whence again
2 424k <b=cand Lemma 4 again gives d = c.

Suppose now that k& =1, that is, @ = 27 If a+2< b =,
then Lemma 4 again applies to give d = ¢. The. cases remain that ‘
—c¢=aandthatb=c=a+ L. Ifq =b = ¢ = 2, then“oﬁe of
4,B,C must be an even permutatxon hcnce must contain a 2’—CyCl€
together with another cycle of even length This implies that d >c+2
To realize ‘this value we take Q = {1, 2,....¢c, p, ¢} with
~(p4g356..¢) (1) @, 8 = 12 2. c) (p) (1), whence

C='(12'368...cp57 el (q4)
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Ifa = 2rand b= ¢ = q + 1, then B and C are even ‘permutations,
“~whence. 4 must be even, with a cycle of length- 27 ‘and * a‘notﬁer
cycle o}' even length., This implies ‘that d >a+2=c+ 1. To
realize this value we take Q = {1, 2,....c, pywith 4 = (1 p) (324 5...c),
B={(12..c)(p), whence C = (1p257 ... c46...c—1) (3).

This completes the proof of the theorem in the case b = .

We assume henccforth that 2 < a << b < c. We turn -next to the

exceptional cases (4) and (5).

Let g, b be odd and ¢ even..The'n 4 and B are even p;:rmutations
.-whence C must be even. Thus C cannot be a single cycle of even
length c. If ¢ is a power of 2, this implies that 4 > 2 ¢ + 2. We establish
below that the value d == ¢ 4 2 can always be. attained when g, b are

odd and c¢ is even.

Leta, ¢ Le Hodd and b even. Then B must be even ahd cannot
consist of a sinéle cycle of length b.If b is a’._p'c‘)w"er‘ of 2,then d > ‘b'n—{—"2,
which, in case ¢ = b 4 1, implies that d Z>c+ 1. To show that,
‘for a odd, b even, and ¢ == b 4 1, the value d= ¢ + 1 can
be rcahzed we take 4 to consist of a smgle a-cycle (together with
fixed points), We attach a b-cycle B; to A4 along a-2 consecutive
points; by'Lemma |, C; = 4B, is a single cycle of length 542 = ¢+1.
We now attach a 2—cycle Bg to 4 along its two rcmaining points, and’
take B = 8132 Then C = 4B = 4B,B, consmts of a smgle c—cycle

to:ether w1th one fixed pomt

: To coin'piéte i‘.hé };ro‘of of the theorem we suppose ¢-and b: 'g'-{iver'l,'-
and start with the complexes Kn, which yield for ¢ all values ¢ = cn.
We proceed. according to the parities of g and b, by attachmg new

- faces to the K, to. obtain complexes K yielding the remaining values
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of ¢. 22 .b.We have already disposed of the case b = ¢, and of case (5)

_.(where g is odd, b.is even, and ¢ = b + 1). Thus we may.-suppese
-that ¢ >b. In case (4), we must rshaw that Khas d = ¢ + 2 vertices.
+In cases (1) !"(2«),‘ (3) we must show that K'has d = c vertices.

V_Cal&e I: q 0dd. We shall aﬂt_taf'c'h h A-faces, for some k to be spe&i—
fied later, each to Bg or to B, ata single vertex, and we attach a

further A-face P to By, as in Lemma 1, along an arc containing some

oddnumber & of ‘vertices . We requite that
(1) 1 <k<k* =a—2, kodd

- To.be able to.attach h—faces ata smgle pomt in the worst. case
where .n’=0 and By = B, and. where k= k* we. must have
h + k* < b. Thus we must rcqu1re that

(2)0 h<h*—-8+2 where 8§ =b—a > 0.

yilBy Lemma 1, C is transmve whence crE= | Q l =Cn + A, where
(3)A—h(a——l)+(a—k),even. ;

';All values of'h k satlsfymg (1) and (2) are possxble, giving all valués
':Vof A m the range ‘ ‘

4y hr(a — 1) + 2 A (h+ 1) ‘(a — 1y, "A:e,,v,en._ o

NThc largest value ofA is A* = (h* + y (a —1)= (5 +.8)(a — l),
andv _-A"‘——d—- (8+3) (a——l)—?(a——l) (8+l)(a—-1)—-_
> 8 (a—— 1)——8—————8 (@ —2) > 0. Thus;as h and k- range overthe.m

adm1ss1b1e values, ¢ = Ca+4 A assumes all values. such that

(5) Cn. + 2 <c < Cn+1 + 2 € = e, (modulo 2)

“*Subcase1.1: - b.eyen. Attachmg asingle: B—dlgon at a smgle,
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vertex to an A-face mcreasés A by +l Thus webbtafﬁ all values
¢ > b + 1 without the restriction that ¢ = ¢, (modulo 2).. The case
¢ = b + [ is case (3), already treated.

Subcase 1.2: b odd. Here d'is ‘even. Since o = b odd, all ey
are odd, whence the values of ¢ = ¢ 4+ A for 'eve_n A are precisely the
odd yrrx_umbers‘:c_ for ¢ > b. To :)b‘taiq ‘the even numbers ¢, for ¢ > b, we
modify the constrution, now attaching P as i;l Lemma 3. Conditions

(1) and (2) are now replaced by
(1 Vo Lk K k*="a =1, keven,

@) 0<h<h* =35+1.

”By Le f'ma 3 C now con51sts of a 2—cycle together w1tha dlsJo1nt
eycle ‘of length ¢ = d 9. Thusc¢ = cn + A where o

B9 A= h ;(a —) +@—k—2 A odd.

We obtain all A in the range H

(4 h@a—1) —1<&" (h+1)(a—1)_3 Aodd
For n > 0, since ca is oddthls yields all ¢ = ca + A for

(5") en— 1 <<c‘ < Cayq -——‘ 3, ¢ even. B
This gives all even valies of ¢ for ¢ > b

Case 11: a even. We attach new A-faces as in Case'I. We now

have
an 1<k <k =aZ 1, odd

@Y O<h<h*=58+1,
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3 A=h(a— 1)+ (a—&), A=h+ 1 (modulo 2),

@ h(a=1) 4 1 <A< (h+1) (a—1), A= h+l (mod) 2).

Nowy = (h*+1) (a—1) —d = (s+2) (e—1) — 2 (a—1)—3
=5(a—1) — 8§ =5 (a—2) >

. Subcase I1.1: b even. Attaching a’ éingle B-digon at a single
vertex increases A by 1, thus removing the res%riction A= h+ 1
and yielding alle > b + 1. '

Subcase 11. 2: b odd. This case,‘ with ¢ '> b, is -treated ae above,
now attaching a single 4-digon to By or B, at a single vertex. There
isroom to do this except possibly in the case that n = 0, hence
. By = By, and that & + k = b. In this case we must have & = k*
~and h = h*%, hence A= h* (a—1) + (a—k*) =" (3+1) (a—1) + L.
’The missing value, ¢ = co + A + 1, can be obtained from some Cn,

for n > 1, provided that ¢ > ¢y, that is, provided that A + 1 > d,
or that (8 + 1) (@ — 1) + 2 > 2 (@ — 1) + 8. This. condition
is equivalent to. (§ — 1) (a — 1) 8 — 2, which holds since
@ =1 (a—1N28—L e :
This campletes the proof of M1Iler S theorem

(/‘
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