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1. DEFINITIONS AND NOTATIONS
Let T= Paeh, m, k=0,1,2,  bea tr’iaﬁguiat" Tbéplitz matrix
so that it satisfies the Silverman~Toeplitz conditions of Tegularity ;(éee
Hardy [1], p. 43, Theorem 2) and A, = 0, for k > n. :

An infinite sertes Ziy w:th parual sums Sn 1s said to be summablﬁ

bv matrix-Cesaro product means or summable (T (C ]) to s, if -
" .
1 E () or = S,asn > oo,

where g, stands for the (C, 7) transform of S,.

Let the Fourier series associated with the function, F{x), which is
integrable is Lebesgue sense over (— =, n) and periodic with period
r., be 7 ' 7

(1.2} tan + Z (ancosnx + bn sin nx).
=

The derived series of the Fourier series (1.2) is
o0

- oo
(1.3)  Z n(bncosnx — ansinnx) = 2 n By (x).
n =d I - I i

Thé sequence {an(x)} is ktiown as the. sequence ‘of.“Fourier

ocFF icients.
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‘We shall use, for a fixed x, the followmg notations :
¥ (1) = flxt) ——](x—t)
g (1) =¥ (1)/(4 sin 1/2)

v — [ 2 (] — cos ki) sinkt  sinkt
h“(t)_{ Ty ~a }

D:.( £ = Si?’r.t-k-t‘ : .

ke(t) = Di(t) + Dalt) + o + Dalty.
- 2. INTRODUCTION -

The f‘ollowmg result concerning the matrix summabmty of the

Theorem A. If, for Wolt) = flx+1) — fix=1) —1,
@1) Yoty = | | Weln) 1dr =0 (1), 251 50

. i : . .
and o : .

(2'2) 21 k (A‘ﬂnf - Am -’H]) ! = (]}, as # — Do
k

then the sequence {n Bﬂ (x)} is summable (T) ( C I} to ]/-ﬁ
The product Sum'méubility"(-}i‘- g) (€, 1) of the derwed Fourier

eries has recently been studied by Sac‘ian and Kathal [3] Our object
here is to extend Theorem A to the derived Fourier series by proving

Theorem If
(2.3) G = I [ g() | du Ho(z) ast - o

and

— 1 .
(,‘24 Z k' z\n,; —An, ?c.:.])i ""0(:’), Cl.s‘n—>-c>o
k=0

< then-the derived Fourier:series (1.3) issuminable (T (C, ), iit the point

x, to zero.
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3. PRELIMINARY ESTIMATES

“For the proof of above theorem we shall require the following

estimates, which may easily be verified :
(3.1) ['M(t) | = O {k), Tor0 <t < Ik,

. ) — \ (1) = sin (k- 1) 42 sin ktj2 ,
(3.2) Ki(r) = Kuog (1) - Du(2) = TR

(3.3) |Kuli)1= 0.(j), for t > k.
| 4, PRELIMINARY LEMMA
We shall also require the following lemma in the sequél :
If g(t) be integrable (L) and 8, any positive real number less than =,

.then the (C,1) transform gn Of the nth partial sum S, of the derived

Fourier series (1.3) is given by

3 -
2 2 (I—cos nt) sin nt sin nt
n = f — t
@_1) ¢ n J()g() ntt Ry t }d

-t {(n. _
PROOF. The proof of (4.1) Iis-due to Sachan and Kathal ([3],

Lemma 2) and is given here only for the sake of completeness.
The n th partial sum Sy of the derived Fourier series (1.3) may be

written as

1 7 » sin (n - %}I
_ i) ——§ -7 dr
.( D { Zsin ]2

Now, since g(t) is integrable (L) and §, fized W1th 0 < 8 < x, the

B T

(C, ]) transform oa of Sn is obtamed as
1 d sin (k + §)¢
_ ¥t PO Sk LN VA dr
o . HE '[0 -()[:k=l dt { -2 sin tf2

1 (" gy 4 ! =
e L Ty A L 2
‘ n:;_jo ‘F() dl_[_{sinztﬂ k=1
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{ cos kt — cos (k+ N1} ]dt .

dnn sin{#2)

- — i [ v -i[—”"‘- o cos et DTt
0 - dt',__ . . .

™ ; T
R | j o) | — cos 3‘1:2 + €os {j%gos (r‘z-{flu_t:
T i ’ stn? {2 - sin® 12

+ {nd1) sin (n-H') :ld‘f" .

si 42
— _im -{“ ) ) cos 112 :___ cos (n+ 3t nsinnt(I=2sin? 1’7)
nw g sin? 12 sin#tj2 - .. sin. t!
— 2u cos nt cos tf2 }1’:
' 1" cos t]2 {1—cos nt) sin nt sin nt
4.2y = t e — dr
( _ ) ™. [0 s) [ n sin? tf2 < nsintf2 sin {2
s I gle) cos(n+Hye-de.
% Jp :
3 : . , "l
- 1 I gy | €28 12 {l—cosnt) , siwnt __ sinnt |y
Tl westRET T2 " sinti2 Sin: tf?_\
+ o (1),

as n—>oo, since in (4.2) the part of the first-integral over {8, =) and

the second integral — each is o (/) by Riemann-Lebesgue theorem.

= nt

— ‘Zj' ()[2(1 ‘cos m) i -sm nt Sva‘-.rz’;nt }a’t +o(D),

=

as n — o, where the last. two. terms in the* above mtcgral are due |
to the Rmmann—Lebesgue theorém and the first, since -
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Using (1

. f’n‘

(5.1)

[5L

12t,’2 _ t2

: 21_8 ()H : 1__.12 . 4 S
— 1 lals 5 4
A 1

b
f gty {{—cos nt) [ cos 42 ; 41({;
Jol T

3

A g Lar
nig

e (I), as # — oo, by continuity of j. !g(t-)-l_;dt‘--

5. PROOF OF THE THEOREM

Ay, (4.1) a_nd denoting the matrix transform of on by ta, we get

{Aa, ¥) J g(t){ A1 kngkI) i sn;:t :

_ 2
w

k

_i'l bz

i

"“-Sinkt}dt—i—o(l)‘

1k 3
AN;IJ.' : )
( ){h +

ate

,
)l ) hu(8) di -+ o0 (1)

k=1 S—’/

= _% {z1.+ 72) + o__(I), say, where.§ is chosen such that
N . T': ) RS AL emn s . B o

(2.3) holds for £ < 3 ( [4], § 13.34, p. 415).

By. (3 l) and. (2.3), we ob!:am _

Tk

1]k ; :
“ gmmmml=j lg(ty 1 O(k) dt
0 0

m:.o.(-l).

Consequently, by regularity of the method of summation

(5.2) 7 =

o (1), as, n— co.

Further, since & is fixed, we can assume, for a fixed positive

integer N
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(5.3) Ijk < 3,fork > Nand .

(5.4 Anx =0, fork = 1,2, .. ‘(N——l) without loss of generality.
Now, by virtue of regular;ty of the method of summatxon, (5.3)

and (5 4), we have

| 72l =

n 3 R
[ 2 {1-—cos ki) sin kt
Z (i, ¢ o
k=1 () j ‘ 4 ){ ktz ki

K '

_. Sinkt }[ﬁ _
i

R 8 | '.s'in k.t
=o{d) +| 2 () j g 2 dt
N Hk t

=1

since the first term of the integral is easily o (/), by partial integration
and (23) and the second is also so, by the second mean value and

Riemann-Lebesgue theorems.

Next, we write, in view of (3.2)

| w2l = Z (Aﬂ,a) J 1) [Ki(2) — Kia(1)] dt ’ +a ()
[ n——l_ S 8 ,
< 2 (e = A k) j g1 Kalt) dt[
L ]k=N _ . I/k_ _
n A1y
-+ z (Ansx) j - g(t) K (1) dtl
k=N4+1 ik o

.3 .
+ | (Aasn) J’ g(t) Kal) dit +
1in ‘
[ Gamr) f, y EOK gy Ol o)

= [J1 4+ Jo + Js + Jg] + o (1), say.
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Using (3.3), (2.3) and integrating by p*éirfs, we easily obtain

Jj g(?) h(t) di | = j )(o( )d;

(3.5) . =m0 (K).
. Also, we observe that the regularity COHdlIIOI’l S\ ki [ = 0 (I)

and the hypothcs:s b K| Aap = Ansiiy) [ =0 (), imply

(5.6) K (/\n,r;) = 0 (!), asn — oo,
; By {5 5) and (2. 4) we havc

"‘--—,1'~._
Jp= Z A — /‘m,f:-.kl) 1o (K)
K=N
= o (1); as n > .
By (5.5) and (5.6), we easily get
Jv = O (l), as n — oo, for v = 3“,‘4“' .
Lasﬂy, by(33),(2 3) and integrating by parts, we have

11y

' # }
J = 2 A'.'J_gi'.' 1
' : A4 (k-1 k=
= 2 lhalo ﬂ{i} 3 )1+ i 1)”%!1
h=N+i ULs e I
. _
=2 Jhajo ()
k=N+1 :

S = o (f_),'as n — oo, 'by reg,ula!_'ity of -tﬁs.ma-tr:ix;{)s'-ﬂ;g}.
Thus )
(57)] wl=o0 '('I'), asn — oo.

Finally, from (5.1), (5.2) and (5.7), we find

th =0 (I}, as n — oo.
This completes the proof of the theorem,
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. 6. REMARKS

It may be noted that on replacing (As,z) by (i) I/n (i) (1-x)x%

x 4 1 (iii) (J-x)2+1 (?t'—l-l)]'()t?.-t:??k,.. (A4-k) X, A+l > 03 x11and

(iv) {-~log (/—x) }”i ;;C—I_ , 0 < x < I; ‘the matrix {}s,z} Is transformed

into the (C,I); Abel, (A A} and (L) matrices YC)PCCtIVElY, which
Y | :
satisfy the condition, X kj )m,z = Any k41 | = 0 (1), as #—> oo,
Consequently, our theorem gives, in pnrtu:ular, the results on {C, I)
(C.0), (4) (C.1), (4,2 (C, 1) and (L) (c,n summabilities of the derived
Fourier series. However, it may be interesting to work out independent

proofs for these results.
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