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ABSTRACT 

In this paper, two general ·theorems invqlving>:multidimensional 
integral transforms have been established. The first expresses an interes.: 
ting relationship between images and. originals of related . functions 10 

multiple integral transforms, while the second reveals the interconnections 
. between images. ()f related functions in the respective transforms. These 
theorems. are sufficiently ··general in nature· and shed light on the basic 

. structure of integral transforms involved. They ·unify arid extend a number 
of scattered theorems iri the literature involving single and double integral 
transforms. Agai'n by taking· specific transforms in our theorems we can 
obtam a large number of results which may prove to be useful in solving 
certain boundary value problems. 

I. INTRODUCTION AND DEFINLTIONS 

Let f (x1 , ••• , Xr ) belong to a prescribed class of real or complex 
-valued functions or r real variables x1 , ••. , xr defined over the region 
R: 0 ~ xi < oo, i = 1, ... r. Then (in line with the definition of linear 
i ntegral transforms), the multidimensional integral transform 
T {f (xu····•xr) ; Pi , ... , Pr } of the function f (x1 , .•• , Xr ) is defined and 
represented as follows : 



·;,' 
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. 0 (p,, ... ,p;.) == i {f(x1·; ·•• .~r) ;Pi ; .. •1Pt} 
o6 00 . . =J ··· S · .. k(xt , .•• , Xr ; Pt' -•Pr) J (x1 ,. .. , Xr) dx 1 •• dxr,. 
0 0 . . 

.. (i.l) 

where the funct~ons J (x1 , .•. , x r) and k ( x1 :·. •. , ~ r ; Pt , •• , ; Pr ) atid the , 

. parameters Pi , ... ,Pt are always so chosen that the intcgral,{Ll) is absolu~ 

tel,Y convergent, i. e, 

( i) The product (;tf1 ... (xrft f (x1 , ... , .Xr) is integtable (in the.sense of 
Lebesgue) _over every finite region 

R (R1 , ••. ; Rr): !St xi ~Rt, Ri ::> 0, t=l, .. , r 

where k (xt , .• ., Xr ; P1 ' .. ., Pr) 

== 0 (x1 Ci ... xrct) ; max { Xt !"'; _x;} -+ 0 

and 

(ii ) the limit of the fitiite form df the multiple irttegral in (l .1) Witb s: .;: J: 'teplaced byJ:
1 

••• s:i ;.· 
ex:ists at the point (pf •• ~.~Pr ) when R1 .... ; h.r .;_. cx::J. 

Fot a specific transform,·k {x1 ,; •• , :ler; pf , ... Pr )is a definite fl.incd 
tion of.t1 , ••• 1 .tr, Pi. ·'•Pr and is kqown as the kernel~of the cran_sform, Also 
0 (Pt , ••• ,Pt ) is called · the image of the function f ( x1 .,. •• ; :iir ) in the 
transform defined by (1.1), a•df (xi; , .tr)the original. -For a systematic 

. study of two general classes of multidimensiotial integral transformations. 
in which the kernels involve the H-functions of several variables, the reader 
is referred to a series of recent papers by Srivastava and Panda [7] who 
also cite a number of special instances of their transforms in the litr.ature 
(cf. [7], Part I, p. l I 9; see also pp. 122-124). 

For an integral transform of the type given by (l.l)i it is easy to 
verify that if 

01 (p,, .. ,p,) = T {f~ (x1 , .. .,xr) ;p1 ,. •• ,pr} ... (1.2) 

and 

02 (pi, .. ., Pr) = T { f2 (x1, · , x.) ; PJ,. .. p.} °' (1.3} 
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then, under appropriate con<litions of convergence of the -integrals 
· involvtd, the following formula analogous to the Plirseval-Goldstein type of 

formula for the Laplace transform in one and more variables holds : 

f oo f 00 J2 (x1 , .•. , Xr)01 (x, , ... '. x~) dx 1 • dxr 
0 • 0 . . 

()() 00 .. 

=f·· ·· f f1 (x1,. .. ,x.) 02 ~x1,. ,xr)dx1 .. dx.. .~.(1.4) 
0 0 .· . 

The above result will be referred to as the generalized Parseval­
Goldstein formula and will be required in the sequel. For .two interesting 
special forms of ( 1,4 ), see Sriv<1stava and Panda [ 7, .Part I, p. 129, 
Theorem 3]. 

2. We first establish a theorem which exhibits an interesting rela­

tionship between images and originals of related functions in the transforms 

T 1 and T 2 defin~.d below. 

Ti {f(x1 , .• ;, x~); p,,. ,p,} 

... (2.1) 

-
=f00 

.•. J·.:oof(x,; . .,x.)k2 (Pi x_1, .. ,p. xr)dx1 .. dx.,' 
0 . 0 .. . .. . . . ·:·(2.2) 

provided that the n:h11tiple integrals involved in (2.1) and (2.2) convergeo 

absolutdy. Our.result may be stated as 

Theorem I. If 
h1 (p, ,. . ., p,) = T, {h2 (X1 , •• ., Xr) g (xI>···• Xr) ; p1, .•. , Pr}, 

and 

h2 (Pi 0 1. ••••Pr
0

r)= T2 {j(x, , .. ., Xr) ;Pi, .. .,pr}1 

then 

· 0(x1, ''" XnP1 , ..• ,pr)dx1···dXr, 

... (2.3) 

... (2.4) 

... (2.5) 
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where 

0(Pi,. .. ,p.,a1>·•·,ar). T 2 {x~acl ... x,"'r-lg(xi.0\ ••. ,x/r) 

.... (2.6.) 

the transformsT1 andT2 are defirwl by means of equations (2.1) and.(2.2), .;. 1 , .•• u r 

are non-zero real number1 of the same sign, eacli a1 , ••• , a.r is. independent of 
Pi• . .. , Pr and all the multiple integrals involved in (2.3) to (2.6) are assumed. to b~ 
il!Jsolutely convergent. 

. . Proof. Appiy._ng the generalized Parseval-Goldstein fot~ula given 
QY (1.4) to the operatio_na~ pairs (2-1) and (2.6), we get 

Joo .. Joo 
0 0 

dxr. -· (2. 7) 

Now replacing a.1 ; • ., a.r by p1 , .•• ,Pr in (2.7), changing the varia~ 
hies of integration slightly on its left-hand. side, and interpreting the result 
thus obtained in terms of (2.3), we easily arrive at Theorem I. 

The presence· of the arbitrary function g (x1 ,· .•• , xr), and the 
general nature of kernel. involved in the above theorem, enable it to yield 
general, deeper and useful results; ' Thus _a l~rge number of results, which 
express relationships between. images a11d origin(llS of rel a fed functions in 
any two ihtegral transforms. of the type -given by (2.1) and H2 2J, found 
recently by several authors and scattered in the literature, are all unified 
and extended by this theorem. 

3. Special Cases of Theorem I 

Ifin the above theorem, we put 11'1 =cr 2 = ... =ctr=1 and take both 
the transtorms T1 and T z as Laplace transforms of r variables, 0 (Pi •... , 
Pr , a.i, ... , a.r) occurring in (2.6) can be given a slightly altered form In 
such a cafe we have 

fi} (p,, ... ,pr;a, , .. ., ar) = L { g (x,·, . .. ,xr) e-a, x,- ... ~ar Xt ;p,' .. ',pt} 

= 9 (p,+a.1, ···• Pr+ar), ... ~3.1) 



where 

9 ( Pi•···dr) = L {g (xi. ·· 'Xr) ;pl ,. .. ,pr} 

-P1x1-·••-PrXr ·· · · Soo s····oo <; . 
= .. e . g (x., ... , Xr) dx1 ••• dxr , 

0 0 . ' 

and the theorem tak~s the following interesting form : 

Corollary I. If 
li1 (Pi, · •Pr) = L {g (x1 , • Xr) ~'J (x1,. .. ; Xr) ~ P1 , .•• ·,Pr } , 
and 
h2 (pi,.~•. Pr)= ft {f(x1,, .. ,xr) ;P1 , ... ,pr}, 
then 
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••. (3.2). 

... (3.3) . ' 

... (3.4) 

h1 (Pi, ... ; Pr) "'."' J00 
... ··r· 

00
J (x1 , ..•• 'Xr) e (x1 +P1 ...... 'C r+Pr) dx1···dxr 

0 I 0 . . 
where .•. (3.5) 

9(P1 , ••• ,p1) = L {g(x1 , ••••. xr);Pl_ , ... ,p,r}, · ... (3.6) 

l{e (P1) > 0 (i=l,. .. , F), and the various multiple integrals involued in (3.3) to 

(3.6) are absolute{Ji convergent. 

The special case ofTheorem 1, when r=2, is of interest in ilself 
Thus on suitable choices of the corresponding transforms T 1 , T 2 , and the 
function g (x,y); we easily get the known results. o.btained earlier by B~se 
[ 2, p. 176 ], Goyal { 3. p. 139 ], and Jain [ 6, p. 314 ]. The a~a,logue of. 

Theorem 1 for integral transforms involving nne v~riable, i. e. when r= l, is 
'also quiteinteresting. It generalizes ,a theotem of Agrawal [1, p. 538] and a 

very large number of other results scattered in the literature, as we pointed 
• I • • 

out in an earlier paper [4]. 

4. Now we establish another theorem which reveals the inter. 

connections between images and related functions in the transforms defined 

by (2.1) and (2.2). We first state 

Theorem 2. If · 

h1 (Pi , ... ,Pr)= T 1 { X1 (ci/cti)-l ... Xrkr/ur)-l f (x, , ... , Xr); P1 ,. .. , Pr} 
. ...(4.l) 
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arid 

h (·p p) T { /( -.-u1· -ur) } 2 1., ... , r = 2 X1 , •• .,xr ;p1, ... ,pr • ... (4.2) 

then 

... (4.3) 

{ 
·p· 

1
-c1-l -c -1 } k ( · -u 1 .. u 

···Pr r 1 al P1 •'. .. , ar Pr - r ) 

. =T2 { 0 (x~ , ... , Xr •al, ... , ar); P1 ,. .. ,Pr}, ... (4 4) 

u 1 ,_.,., ar are non·zero .real numbers Of the same Jign, each of a 1 , ••• , a 1 is indepen~ .· 
dent of p1 , •.. ,pl' and all the multiple integrals involved in equations (4.1) to (4,4) 
are assumed to converge absolute[y. 

Proof. Theorem 2 easily follows on applying (l.4) to the pairs · 
given by (4.2) and (4.4) a_nd proceeding on lines similar to those- indicated 
in the proof of Theorem 1; 

. Theorem 2 also sufficiently general in natur ..:. Its analogues for' 
one-and two-dimensional integral tra1;1sforms were obtained by the author, 
in his eatlicr papers ( [4), [5) ). These analogues arc of interest iti them­
selves and unify and extend a vast.number of results as pointed therein . 

. In conclusion, we remark that a number of theoremsinvolving 
specific multidimensional integral transforms introduced from time to· time 
by several authors can be obtained. from Theorems 1 and 2 ; however, we· 
do not record them here for want of space . 
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