G ;Dediqat?d ‘to. the-memory of ’I’Vr‘ofessm;; ArthurEfdé{yz) :

 ON MULTIDIMENSIONAL INTEGRAL TRANSFORMS :
‘ By : ‘ i
K.C.GUPTA "

s Departmmtqf Mathematzc:,M R. Engznunng College.
]azpur-302004 India =

(Recewcd January 10, 1980 Revised : March? 1980) i
ABSTRACT | |

In thls paper, two gcneral theorems mvolvmg muludlmcnsxonal :

| _integral transforms have been established. The first éxpresses an interes-

- ‘ting relationship between images and. originals of related  functions 1n

multxple mtcgral transforms, while the second reveals the mtcrconnccuons .

: ',;'between 1magcs of related functions in the respective transforms. These

theorcms are’ sufficiently - general in nature and shed light on the baSIC
= structure of integral transforms involved. ‘They unify and extend a numbcr :
. of scattered theorems in ‘the literature mvolvmg single: and double: mtegral‘,
‘transforms. Again by taking specific transforms in our theorems we can
obtam a large number of results which may prove to be useful in solving
certain boundary value problems.

I. INTRODUCTION AND DEFINITIONS

Let f (%, ..., % ) belong to a prescribed class of real or complex
—valued functions or r real variables x, , ... , %, defined over the region
R:0< % <00, =1,..r. Then (in line with the definition of linear
i ntegral  transforms), the  multidimensional integral  transform
T {f(*19.0s%r) 5 P15 .- o P } Of the function f(x,, ..., x; ) is defined and
represented as follows : .
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ﬂ (pl! ?’Pr)—T {f(xii-d’xr) pl’ ’Abf}

‘ "f j‘ k (xi sosy Xr )pi PR pr) f(xl 3inds xr) d‘cl dx" : ‘ n (Ll)

,V'V“wherc the functions f(x1 y oees xr) and & (%1 ,ce., £, 01 5 ves ;ﬁf yand the 1

“v‘paramctcrs p1 yesey Dg ATE always so~ chosen that the intagral (1.1) is absolu-
~,‘itely convergent i.e i : g '
(i) ‘The product (xf) c1. (xr)Cr f(x1 yros # ;) is integfable (in the sense of
B Lebesgue) over every finite region i :
g R (Rl ’;"'1 Rt) . s 4 \Ri: Ri”> 0, 1=1’ .oy T
thrck(xiv s-"i-?pl,- ’pr) » '

= 0()&;161 -k "),max{x,, ,x} -0
. amd. S ,
- (fi)  the limit of thc finite form of thém‘ultip‘,le integral in (1.1) with

exists at the pcnnt ( p, seesg Pr ) when R1 vy R" = oC.

i

For a specific transform, k (x, Saery x, ; p, . p, Yisa deﬁmte‘ f’ijnc‘a :

tion of #y,..us %1y 1, - ,pr and is known as the kernel Yof the transform; A'}so,f .
“;ﬁ(pl seses Dt ) is called the ‘image . of the fllnctlon f( Hi'ae . %r ) ln the -

transform defined by (1.1), amd f (x1, , %) the _original. For a systematlc '
.study of two general classes of muludtmcnsnonal integral transformations.
in which the kernels involve the H-funections of several variables, the reader
is referred to a series of recent papers by Srivastava and Panda [7] who
also cite a number of special instances of their transforms in the lite.-ature
(cf. [7], Part I, p. 119; sce also pp. 122-124).

For an integral transform of the type given by (1.1); it is easy to
verify that if
Galbss b)) =T {1 (F1seees %e ) 5 Py 0eees o } - (1.2)

B2 (1o ) =T {fa (%1, 5 %) 5 P - £13)
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, then, undcr approprxatc condmons of convergence - of the Vintégrals’
involved, the following formula analogous to the Parseval-GoldStem type of S
formula for thc Laplace transform in Onc and more varlables holds

. ,( " ’ j2 (xl, . : xr)ﬂi (xv1 3 emn xr) dx«l dxr |

—f f fl (xla :xr) ﬂz xls ‘~" r) dxl dx" . ”(1.4)

. o Thc above result will be refcrrcd to as the gcnerallzed Parseval-
o Goldstem formula and will be required “in the sequel For two mtcrestmg .
* special forms ‘of ( 1.4), sce ‘Srivastava and Panda [7 PartI P. 129,

' Theorcm 3] S : v , . .

2. We first ebtabhsh a theorem wthh exhlblts an mterestmg rela-' ‘
. tlomhlp between images and originals of rclated funcuons m the transformsf :
“Ty.andT 4 dcﬁncd bclow ' b

Tl {f(xl;,.;., xr),P; I :pr}

VE‘Tz {f(xls »xr) pl: np } : ’ ‘
=j' " f(x, : ‘. - xr) k2 (pl xl, 7 ,Pr r) dx1 dxr, = (‘ 4} =

-'prov1ded that the multlple mtegrals mvolved in’ (2 l) and (2 2) canvergeo

: abSOIutcly Our result may be stated as

Theorem I. If

hy (B seees p0) = Ty {hg (Xy yeess %) & (K15000y %) 5 P150e0s P ) -(2.3)
and '

hz (Plol: seey prar)— 2 {f(xl 300y pl’ ’pr}’ (24)
then : ; v

o (@]
hl (Pls---,ﬁr)= {0'1---0“1"} fO e fO f(xl"' s %r)

B (X1 eees Koy P oseeny po) dxy . dxy, ...(2.5)



e where e

sy

"ﬂ(h, ,ﬁr’ al yo o sar) == T2 {x'd‘l xrd 1 (xl. ," sx;‘ r)

Ky (0-1x1 f', ’arxr ) Plr :pr}: : (26)"

the tmnsﬁ)rms Tl and Ty are defined by means of equations (2 1 ) and (2 2), T g O
. are non-zero real numbers of the.same sign, each ay,...,a, is independent of
Cpyveey e and all the multiple zntsgrals znvolved in (2 3) to (2 6) are assumed to be ’
absolute{y convergent. v o
" . Proof. Applymg the gcncrahzed Parseval Goldstem formula g!Ven' '

by (L 4) to the. operatlonal pairs (2.4) and (2.6), we get . S

*J f “”1»ﬁ73%“”mﬂﬁwﬁpmﬁ‘
i kl'l‘(a'i 'xlol""-‘"b”r x;‘ar) dx]_ dx, :
,ég-.jo fo_ B (%1505 ¥y Cpyenns &) f,(x, ?...,x,) dx1 dx;,,,v‘ . (2.7)‘,

L Now replacing a, ; .., @; by py 5..., p in (2. 7 changing the varia-

- “bles of mtegratlon slightly on 1 its - lefe- hand side, and interpreting the result -
thus obtained in terms of (2.3), we easily arrive at Theorem 1.

The preScnce of the arbitrary function FACTRINS x,), and lhe :

; general nature of kernel mvolVed in the above theorem, enablc it to yleld :

: ﬁ,general deeper and useful results Thus a large number of resuits, whxch

£ - eXpress relatlonshlps between. images and originals of related funcuons in -

-any two integral transforms of the type given by (2. 1) and /(22 ), found
recently by several authors and scattered in the literature, are all unified
and extended by this theorem.

3. Special Cases of Theorem {

If in the above theorem, we put ¢,=0c,=...=c¢ =1 and take both
the transtorms T, and 7, as Laplace transforms of 7 variables, ¢ ( p3,..-s
Pr s @1seees @) OCcurring in (2.6) can be given aslightly zltered form In
such a case we have

=0y Kg=... =0, X,

9 (Pu---ubr: Qs @) =L { g (xivyv' ciske) € LY NP 7%,
= 0 (P2+215 s Pr+0g), (3
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o

where

":;,O(pl, ’Pr)_L{g(xls,--:"r) [’1’ rpr}

_5 B G T 5 b i Ceeny

and the thcorem takes the’ followmg mtercstmg form

s Co_rol‘lary I ,If

ki (pu b)) =L t (x, Voo ) b (xl, w)i bt (33)

ks (pla apr) =L {f(xl. 2ieey xt) ﬁl 2urey pr }! I ‘ ""(3‘;4) b
then : , N T st i

g h (1’1 ’ ’ﬁr) == j - fO S ,...,"xr)ﬂ"(’x1+l)‘| 3 ot r+[’r) dxl dx g
\where o - o ; L = - e (3 %

""B(p‘l’ >Pr)"'['{g(xn 0. %) 3 1’1, aﬁr}, e (36) :

: “Re(p;) >0 (l=l 1), and the varwus multcple mtegmls mvolved in (3 3) to

e (3 6) are absolutebv convergmt

 The spectal case of Theorem 1 when r=2 is of interestiin’ llself

. Thus on suitable choices of the correspondmg transforms Ty, Ty, and the

functlon g (%, »), we casily get the known results obtained earlier by Bose
2,p.176'], Goyal {3.p-139], and Jam[6 p. 314] The analogue of .

: '_Theorcml for mtegral transforms mvolvmg one vanable, i. e. when r=1,is
-~ also quite mtcrcsnng It generallzes a theorem of Agrawal [l p. 538] and a

Very large number of other results scattered in the literature as we pomted. :
out in an earlier paper [4].

4. Now we establish another theorem which reveals the inter-
connections between images and related functions in the transforms defined
by (2.1) and (2.2). We first state

Theorem 2. Jf -

h1 (p1 ,...,.ﬁ'r) = Tl { xl(C1/d’1)-1 ...xr(cr/ar)_l f (x‘ poees xl') ;I)l PREEE pr(i i)



and

,hr(pl, 0= 7, {f(x1 T i ,p,}V'f ey
h(Pl, ’pr)_‘{al"wr}j’ f hz("l: r)
. (xl,...,xr,_pl ,...,p,) Byodsy, L (43)
b Coedogetn
,{pl~ e }k (a.ﬁl s 7Y

——Tz{ﬂ(xl: xr,al, ,a,) P1se- ,pr}a (44)

» Ty 50y Op ATE non-zero real numbers of the same sign, each qf Qyyeins a, is mdepen—”’
dent of P sees Py and all the “multiple mtegrals involved in: equatwns (4 I)to (4. 4),, ‘

o are assumcd to converge absolutely

Proof Theorem 2 easily follows on applymg (l 4) to the parrs.'
' glven by (4.2) and (4.4) and proccedmg on lmes similar to those indicated .,

| in the proof of Thcorcm 1.
Theorem 2 aISo suﬂicwntly general in nature. Its analogues for

. onc-and two-dimensional integral- ttansforms were obtamed by the author
_ in his eatlier papers ( [4], [5)). These. analogues are - of interest in them—y :

selves and umfy and extend a vast nnmber of results as pomted thercm

: In concluswn, we remark that a number of theorems mvolvmg’
~ spcc1ﬁc muludnmensnonal integral transf orms ‘introduced from time to tlmc :
by several authors can be obtained from Theorems 1 and 2 ; however, we-

do not tecord them here for want of space.
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